

Our Ref:240303 Department Ref: DA 22/6312

20 September 2022

Department of Planning Industry & Environment GPO Box 39 Sydney NSW 2001

ATTENTION: KEIRAN THOMAS

Dear Keiran,

RE: RESPONSE TO REQUEST FOR INFORMATION - DA 22/6312 106 BOURKE STREET, CARRINGTON

Thank you for your letter dated 12 July 2022 providing the Departments request for additional information in relation to the above application following further assessment. Please accept this submission as our formal response to the matters raised.

Department of Planning and Environment

1. Contamination

The Department has considered the information submitted with the application as well as the further information provided post lodgement. The Department advises that this information does not meet the requirements of clause 4.6 of the State Environmental Planning Policy (Resilience and Hazards) 2021 (being the former State Environmental Planning Policy No. 55 – Remediation of Land). The Department acknowledges that no land use is proposed as part of the development, however undertaking the further investigations would be prudent at this stage prior to further works taking place to understand the nature of the contamination prior to construction works commencing.

The Department requires an assessment that meets the requirements of the NSW EPA document: Consultants reporting on contaminated land: Contaminated Land Guidelines (copy enclosed). Given the known contaminant within the building it is strongly recommended that the assessment comprise a Detailed Site Investigation as described within the above guidelines. The investigation should be prepared by a contaminated land consultant certified under one of the two schemes recognised by the NSW EPA. Further details can be obtained here: https://www.epa.nsw.gov.au/your-environment/contaminated-land/managing-contaminated-land/engaging-consultant

Sydney

Level 35 One International Towers 100 Barangaroo Avenue Sydney NSW 2000 02 8046 7411 sydney@adwjohnson.com.au **Central Coast** 5 Pioneer Avenue, Tuggerah NSW 2259 PO Box 3717, Tuggerah NSW 2259 02 4305 4300

ADW JOHNSON PTY LIMITED ABN 62 129 445 398

> Hunter 7/335 Hillsborough Road, Warners Bay NSW 2282 02 4978 5100

<u>coast@adwjohnson.com.au</u>

hunter@adwjohnson.com.au

www.adwjohnson.com.au

Response

As requested, a Detailed Site Investigation has been prepared by Nation Partners and is provided within **Appendix A**.

City of Newcastle

1. Heritage

The application proposes remediation works to address a significant asbestos hazard present in the subfloor area of the heritage listed building. The SEE states that friable asbestos fibres are stuck to/embedded within the original cast iron floor grates of the engine room and embedded asbestos material is present in the ground surface of the subfloor cavity. The stability of the floor structure of the engine room is also compromised, with significant corrosion having occurred at the base of the steel columns supporting the floor.

It is noted in the application that Heritage NSW requested a detailed options analysis of potential remediation methodologies:

'From previous consultation and from the information you have presented to us, the structural integrity and sub floor asbestos contamination are clearly hazards that need to be addressed to assisting in attracting and securing an end user for the adaptive re-use of the engine house. We agree that remediation works proposed for the sub floor are required and advise that a S60 application for these works is submitted. An options analysis of potential stabilisation and remediation works should also be submitted with your application. This analysis should demonstrate what options have been considered and discounted and why the actions/works proposed are most appropriate. Where specialist advice (industrial hygienist, structural engineer, etc) has been sought it should be submitted as part of your application.'

The Options Analysis report (prepared by EJE) presents 10 options to address the asbestos and stability issues present within the building. These are ranked with regard to heritage impacts, budgetary constraints, engineering considerations, end user viability etc. The proposed methodology is to encapsulate the asbestos hazard under a floating concrete slab, with interpretive colouring in the slab to mark out the former location of machinery, and glass inserts to provide select views to the subfloor below.

From a heritage perspective, Option 5 (encapsulation within a glass floor) would provide additional heritage benefits to visitors by reducing physical impacts to heritage fabric and illuminating the area below the glass floor surface attractively. However, it is noted that this limits end user practicality which is essential for the long-term management of the building.

Introduction of the floating concrete slab will have a physical and visual impact in relation to heritage fabric associated with the original engine room, including the cast iron floor grates, concrete engine buttress, and other componentry, and the visual/spatial qualities of the room afforded to visitors. Additionally, removal of masonry elements, steel and timber beams in the engine room will impact the integrity of the heritage item. However, it is considered that the approach presented in the Options Analysis Report and assessed in the HIS is reasonable and will ensure longevity of the building, facilitate development of a new adaptive use, and assist with conservation of the building long term which is an

overall positive outcome. The proposed interpretive measures will assist in mitigating this impact by communicating the significance of those removed features.

It is recommended that a condition is included on any consent issued ensuring that a heritage architect is engaged to oversee the proposed works and provide ongoing advice, including an induction session to all contractors prior to commencement of works to highlight the heritage significance of the site. A photographic archival record should be undertaken prior to works commencing and periodically during the construction to document the works. Any building fabric to be removed that is capable of reuse within the building should be retained and reused on the guidance of the project heritage consultant.

It is also recommended that detailed design of the proposed accessible ramp is undertaken in such a way that the ramp is an independent structure, fully reversible and minimises any physical intervention to the exterior of the heritage building.

Response

EJE Heritage acknowledges the City of Newcastle's summary response regarding the heritage context of the proposed works within the significant historic building. We believe the City of Newcastle has thoroughly interpreted the complexities of the project, balancing heritage conservation with safety, useability and commercial considerations. EJE Heritage has a long history working with Port of Newcastle (PoN) on staged conservation works at The Carrington Hydraulic Engine House and we believe that the proposed works of this stage will be the catalyst for active negotiation around not too distant future re-use of the building, which will be a benefit for the cultural heritage of Carrington and the broader Newcastle area. PoN have no objection to the proposed consent conditions for the works related to heritage, including the requirements for supervision of the works by a heritage architect, the undertaking of an archival photographic record, the re-use of building fabric where appropriate, and the independent structure of the entry ramp.

2. Flood Management

According to CN's records the subject land is identified as being flood prone land. This risk has not been addressed in the SEE. It is recommended the Applicant is required to consider the flood risk to the proposal. In this regard, while it is acknowledged that the provisions of the Newcastle Development Control Plan 2012 do not apply to land inside the Port of Newcastle Lease Area under the abovementioned State policy, it has been previously referred to by the Department in its consideration of some development applications on land within the lease area. Accordingly, it is recommended the Applicant is also required to have regard to any relevant requirements of Section 4.01-Flood Management of the DCP.

Response

Newcastle Development Control Plan provides detailed provisions relating to matters of environmental planning significance for Newcastle to be taken into consideration by City of Newcastle when exercising its environmental assessment and planning functions under the EP&A Act. The DCP relates to land which the NLEP applies or land outside of the Port of Newcastle Lease Area and therefore is not applicable to the proposed development. Notwithstanding this, as requested by Council, consideration has been given to the relevant requirements of Section 4.01 Flood Management.

The aims of this section are as follows:

- To guide the development of flood prone land, applying balanced strategies to economically, socially and environmentally manage risk to life and property.
- To set aside appropriate areas to convey and/or store flood waters.
- To ensure development, when considered both individually and as an instance of cumulative development trends, will not cause unreasonable adverse flooding impacts in other locations.
- To implement the principles of The NSW Government Floodplain Development Manual (2005) to new development as applicable.

As identified on City of Newcastle's interactive flood map, the site is identified as low risk of flooding and is not within a floodway.

As shown on the architectural plans submitted with the DA, the proposed new engine room floor level is RL3.700M (AHD), which is well above the minimum floor level of RL2.3M (AHD) previously identified and required by Condition 5.10 of DA07/1496 issued by the City of Newcastle for the adaptive reuse of the building.

Below the slab all required electronics and mechanical components are proposed to be at RL2.3m (AHD). As such, it is considered all required electrical fixtures are located above the flood planning level, which is consistent with Section 4.01.03 of the DCP 2012.

Any works below this are structural in nature, columns and footings are all flood resistant structures.

It is considered that the proposal remains consistent with Conditions 5.10 and 5.11 of DA 07/1496 previously imposed by Council for the adaptive reuse of the Carrington Engine House and in turn the relevant sections of Section 4.01 Flood Management of CoN DCP.

3. Section 7.12 Development Contributions

CN's Section 7.12 Development Contribution Plan (Commenced Jan 2022) applies to the subject land. A maximum levy of 1% applies to developments having a cost of the development of more than \$200,000. According to the SEE (Pg 5), the 'estimated costs of the works is \$1,500,000.' It is recommended that the Applicant be required to provide a cost summary report in support of the application. In this regard, it is noted that sub-clause 208(4) of the Environmental Planning and Assessment Regulation 2021 provides that.' ...the costs of any development that is the adaptive reuse of a heritage item. ' are excluded from any estimate or determination of the proposed cost of carrying out development.

Response

CN is not the consent authority for this application. The Minister, as consent authority, is not required to impose a condition of consent that is determined in accordance with Council's Section 7.12 Development Contributions Plan, commenced 1 January 2022 (**Contributions Plan**). The Minister must, however, have regard to the Contributions Plan (see Section 7.13 of the EP&A Act).

A cost report as requested by CN has been prepared by Rider Levett Bucknall and is provided within **Appendix B**. Notwithstanding, for the reasons set out below, there is no justification for imposing a condition requiring payment of development contributions for the proposed development.

- (a) The proposed development involves repairs and alterations and additions to the building only and will not result in any increased demand for public amenities or services.
- (b) CN (if it were the consent authority) would not be entitled to impose a condition requiring payment of contributions, in accordance with the Environmental Planning and Assessment (Local Infrastructure Contributions - Port of Newcastle) Direction 2014. It is clear from this direction and the proposed infrastructure contribution reforms that development within the Port Lease area should be excluded from any requirement to pay development contributions under Section 7.11 or Section 7.12 of the EP&A Act. The Explanatory Paper for the Proposed Environmental Planning and Assessment Amendment (Infrastructure Contributions) Regulation 2021 provides that the regulation will be amended to exclude certain development from local infrastructure contributions, including "development in the Port Botany Lease Area, Port Kembla Lease Area and Port of Newcastle Lease Area under State Environmental Planning Policy (Three Ports) 2013" [now State Environmental Planning Policy (Transport and Infrastructure) 2021]. The Contributions Plan further confirms that no contributions may be imposed by Council for development on land within the "Port of Newcastle Lease Area".
- (c) The proposed works are conservation works to a heritage listed item, involving the safe and responsible removal and disposal of asbestos and will have a public social and environmental benefit in themselves. It is therefore inappropriate to require additional development contributions on the grant of consent for those works.

If the consent authority considers, contrary to the above, that it is appropriate to impose a condition requiring the payment of contributions as requested by Council, the costs of the works to the engine house and the construction of the accessible entry ramp cannot be included when determining the cost of the development for a condition under Section 7.12 of the EP&A Act.

Clause 208 of the Environmental Planning and Assessment Regulation 2021 (EP&A Regulation) relevantly provides that the following costs and expenses must not be included in an estimate or determination of the proposed cost:

- (a) The costs of repairs to a building or works on the land that will be kept in connection with the development.
- (b) The costs of fittings and furnishings, including refitting or refurbishing, associated with the development, except if the development involves an enlargement, expansion, or intensification of a current use of land.
- (c) The costs of enabling access by people with disability to the development.
- (d) The costs of development for adaptive reuse of a heritage item.

Repair of existing floor structures and other components of the building and installation of services constitute repair and refitting works that will not result in an enlargement, expansion or intensification of the use of the land. The proposed new access ramp will allow access by people with a disability to the building. The works proposed will also facilitate, and are for the purposes of, adaptive reuse of the heritage building.

The only costs that may be considered for the purposes of determining a condition under Section 7.12 of the EP&A Act are the costs of carrying out the landscaping and interpretative signage works. Arguably, those works should also be excluded from the determination of costs because they could otherwise be carried out as exempt development. Those works are included in the development application only for completeness.

In any event, based on the costs report attached, the estimated cost of carrying out the development in accordance with Clause 208 of the EP&A Regulation taking into account landscaping and interpretative signage works, is \$30,401. The contribution payable in accordance with the Contributions Plan on that development cost is nil (0% for development up to and including \$100,000).

Given the above, we consider that a condition requiring payment of any development contributions would be unreasonable in the circumstances.

CONCLUSION

We trust that the additional information provided is satisfactory and allows the Department to finalise its assessment of the application.

Should you have any questions in relation to the contents of this submission or would like to arrange a meeting to discuss any of the above matters further, please do not hesitate to contact the undersigned on (02) 4978 5100 or via email at <u>zacs@adwjohnson.com.au</u>.

Yours sincerely,

ZAC SMURTHWAITE SENIOR PLANNER ADW JOHNSON PTY LTD HUNTER OFFICE

N:\240303\Planning\DA Prep\Post-Lodgement July 2022\Response to Departments Request for Additional Information 200922.docx

SITE INVESTIGATION REPORT (NATION PARTNERS)

SOLUTIONS FOR COMPLEX PROJECTS

Detailed Site Investigation – Carrington Hydraulic Engine House, 106 Bourke St, Carrington

EJE Architecture

SOLUTIONS FOR COMPLEX PROJECTS

We help solve complex problems for projects

We believe that well-planned and targeted advice can help shape a project that is not only better developed, but is delivered more effectively, with greater acceptance and positive outcomes.

Nation Partners isn't your average consulting firm. A certified B Corporation, we attract and develop the brightest thinkers and take an active part in shaping the world.

With expertise in projects in the government, transport, water, property and urban development sectors, we provide a suite of services aptly tailored to each client and project at hand.

Document title

Detailed Site Investigation – Carrington Hydraulic Engine House, 106 Bourke St, Carrington

Version V1.0

Date September 2022

Prepared by Nelson Phillips, Laura Martinez

Approved by Luke Clements (CEnvP-SC)

File name DSI – Hydraulic Engine House, 106 Bourke Street_v1.0.docx

Nation Partners Pty Ltd ABN 96 166 861 892

Suite 306, 50 Holt St Surry Hills NSW 2010

1300 876 976 info@nationpartners.com.au nationpartners.com.au

COPYRIGHT: The concepts and information contained in this document are the property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the written permission of Nation Partners constitutes an infringement of copyright.

Executive Summary

Nation Partners Pty Ltd (Nation Partners) was engaged by EJE Architecture (EJE) to conduct a detailed site investigation (DSI) of 106 Bourke Street, Carrington (hereafter referred to as the "site"). The DSI has been requested by the Department of Planning and Environment to EJE as part of the Development Application (DA) submitted for the proposed restoration works at the site. These comprise encapsulation works in the Carrington Hydraulic Engine House (CHEH) main hydraulic engine room, installation of a new accessible entry ramp and new interpretative landscape features (not within the building).

The site's location is shown on the attached **Figure 1**. The scope of the intrusive DSI is limited to investigation areas of the site, which are potentially being disturbed by the works (refer to **Figure 2**).

Objectives

The objectives of this DSI were to:

- Identify whether contamination may be present at the site as a result of current or historical activities; and
- If contamination is suspected to be present, to characterise the nature and extent of contamination at the site.
- Assess the potential for contamination (if present) to migrate offsite and adversely impact sensitive receptors.
- Assess the risks to human health and the environment under the site's land use.

Nation Partners understands that no changed land use is proposed as part of the development and that the site is zoned SP1 Special Activities in accordance with former Three Ports State Environmental Planning Policy (SEPP), now SEPP (Transport and Infrastructure, 2021). Nation Partners adopted a commercial/ industrial land use as the target land use for the investigation.

Scope of Work

To meet the above objectives, the following scope of work was completed:

Desktop Assessment

- Reviewed historical and publicly available information for the site, including public databases and registers, and existing reports held by Port of Newcastle (PON) that provide information and data regarding the contamination conditions of the site. A sampling plan was prepared and provided to EJE with proposed sampling locations; and

-Reviewed previous investigation reports provided by PON, these are listed below:

Carrington Hydraulic Engine House Sub-floor Remediations Assessment (AIS, 2022);

Port of Newcastle Baseline Contamination Site Assessment -Stage 1 Summary Report (GHD, 2015):

Port of Newcastle Baseline Contamination Assessment - Vacant and Operational Lands – Stage 2 Summary Report (GHD, 2017): and

Statement of Environmental Effects – Proposed Stage 3 Restoration Works to the Carrington Hydraulic Engine Room (ADW Johnson, 2022).

• Job Safety and Environmental Analysis

- Preparation of a job safety and environmental analysis (JSEA) covering specific health, safety, and environmental hazards associated with the site investigation works;
- Performed a Before You Dig Australia (BYDA) search to inform potential sampling constraints and preferential pathways; and
- Reviewed underground services location plan provided by PON.

Investigation Works

- Identified sampling locations and located underground services in collaboration with PON prior to ground disturbance;
- Collection of 14 soil samples from 8 different locations within the main engine room, the proposed external ramp area, adjacent to the façade and the western side of the building. Sampling locations are detailed in **Figure 2**;
- Implemented decontamination and quality control procedures in accordance with relevant guidelines and standards, see Section 6.2 for details; and
- Submission of soil samples for analysis by a National Association of Testing Authorities (NATA) accredited laboratory.

DSI Reporting

– Preparation of this DSI report in accordance with the National Environment Protection (Assessment of Site Contamination) Measure 1999 and the Contaminated Land Guidelines – Consultants Reporting on Contaminated Land (NSW EPA, 2020).

Conclusions

Based on the review of available information for the site and its history, site observations, and the results from data collection activities undertaken for this DSI, Nation Partners presents the following conclusions with respect to the assessment of contamination at the site:

- Fill material surrounding the CHEH in the investigation area was shown to have no exceedances of both health and ecological investigation criteria.
- Soil material within the main engine room as shown to be contaminated by lead, with concentrations exceeding health investigation levels. Further exceedances of total recoverable hydrocarbons and benzo(a)pyrene were observed when compared with ecological screening levels.
- Groundwater at the site historically did not record concentrations of contaminants that would indicate linkage to the contamination present at the site. Exceedances noted in previous investigations (GHD, 2017) were considered a result of historical commercial and industrial land use in the area.
- No potential asbestos containing material was observed within the investigation area, nor was
 asbestos reported in soil samples submitted for analysis, but past assessments noted that asbestos
 was still present within the floor grates and sub-floor cavity floor surface of the main engine room of
 the building. Therefore, the investigation cannot disregard the potential for asbestos to be present.
- The nature and extent of contamination at the site corresponds to the depth and extent of fill material present at the site. The data available is limited and not sufficient to assess the vertical extent of contamination at the site. Still, based on the desktop review it appears that vertical contamination is potentially limited to the depth of fill material present at the site.
- Based on the results of the DSI, the revised conceptual site model (CSM) for the site indicates viable source-pathway-receptor (SPR) linkages for current and future site workers, visitors, and trespassers who may be accessing the site and disturbing soils at the main engine room. PON is currently mitigating the risk posed by the existing contamination by requiring visitors to follow a set of health and safety protocols. Additionally, the contamination will be contained as part of the proposed stage 3 restoration works, mitigating the risks to receptors. On this basis the potential risks to human health and ecological receptors, and to PON as the land manager of the sit, are considered low.

Recommendations

Based on the conclusions presented above, Nation Partners provides the following recommendations to EJE for the management of contamination at the site:

- If contamination remains beneath the proposed encapsulation concrete slab in the main engine room, the land manager should prepare a long-term Environmental Management Plan (EMP) to ensure the ongoing protection of receptors. The EMP should be prepared in accordance with NSW EPA (2020) and shall, as a minimum, include controls to be implemented during any future maintenance activities on the site, including excavations; and
- If soils within the main engine room were to be removed, these should be managed following the NSW EPA waste classification guidelines and disposed to an approved licensed facility.

Acronyms and Abbreviations

ACM	Asbestos Containing Material
AEC	Area of Environmental Concern
AHD	Australian Height Datum
B(a)P	Benzo(a)pyrene
BTEX	Benzene, Toluene, Ethylbenze and Xylene
CoC	Chain Of Custody
CLM	Contaminated Land Management
CSM	Conceptual Site Model
DA	Development Application
DDD	Dichlorodiphenyldichloroethane
DDE	Dichlorodiphenyldichloroethylene
DDT	Dichlorodiphenyltrichloroethane
DP	Deposited Plan
DBYD	Dial Before You Dig
DQO	Data Quality Objective
DSI	Detailed Site Investigation
DTW	Depth To Water
EIL	Environmental Investigation Level
EPA	Environment Protection Authority
GPS	Global Positioning System
НСВ	Hexachlorobenzene
HIL	Health Investigation Level
HSL	Health Screening Level
JSEA	Job Safety And Environmental Analysis
LCS	Laboratory Control Sample
LOR	Limit Of Reporting
m	Metre
mAHD	Metres Above Australian Height Datum
mBGL	Metres Below Ground Level
MGA	Map Grid of Australia
μm	Micrometres
mg/kg	Milligram Per Kilogram
mm	Millimetres
NATA	National Association Of Testing Authorities
	-

SOLUTIONS FOR COMPLEX PROJECTS

NEPC	National Environmental Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticide
OPP	Organophosphorous Pesticides
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyl
PCE	Tetrachloroethene
PID	Photo-Ionisation Detector
ppm	Parts Per Million
POEO	Protection Of The Environment Operations
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
SPR	Source-Pathway-Receptor
TEQ	Toxic Equivalence Quotient
TRH	Total Recoverable Hydrocarbons

Table of Contents

Executive Summary Recommendations		
Acronyms and Abbreviations	5	
Table of Contents	7	
1Introduction1.1Background1.2Objectives1.3Scope of Work1.4Legislation, Standards and Guidelines	9 9 10 10	
 Site Information Site Location and Description Current and Historical Land Use Environmental Setting Topography and Hydrology Soils, Geology and Hydrogeology Sensitive Environmental Receptors Acid Sulfate Soils 	12 12 13 13 13 13 13 13	
 Site History and Condition Historical Business Directories Historical Map and Aerial Photography Government and Regulatory Searches Previous Investigations and Assessments 	14 14 15 15 15	
 Assessment Methodology 4.1 Potential Contamination Sources 4.2 Potential Contaminants of Concern 4.3 Potential Receptors 4.4 Preliminary Conceptual Site Model 4.5 Data Quality Objectives 4.6 Assessment Criteria 4.6.1 Soil Assessment Criteria 	18 18 18 18 18 18 19 22 22	
 5 Investigation Approach and Methodology 5.1 Investigation Scope 5.2 Fieldwork Procedures 5.2.1 Health and Safety 5.2.2 Soil Sampling 5.2.3 Decontamination 5.2.4 Data Review and Verification 5.3 Laboratory Analysis 	26 26 26 26 26 26 27 27 27	
 6 Investigation Results 6.1 Field Observations 6.1.1 Soil 6.2 Laboratory Analytical Results 6.2.1 Soil Results 	28 28 28 28 28 28	
 7 Assessment of Site Contamination 7.1 Nature and Extent of Contamination 7.1.1 Fill Material 	30 30 30	

7.1.2 Asbestos	31
7.1.3 Groundwater	31
7.2 Revised CSM	31
8 Conclusions and Recommendations	34
8.1 Conclusions	34
8.2 Recommendations	34
9 Limitations	35
References	36
Figures	37
Tables 38	
Appendix A – Photo Appendix	39
Appendix B – Bore Logs	
Appendix C – Calibration Certificates	41
Appendix D - Field QA/QC Assessment	42
Laboratory QA/QC Assessment	42
DQI Compliance	43
Data Quality Assessment	44
Appendix E – Laboratory Certificates	

1 Introduction

1.1 Background

EJE Architecture (EJE) was commissioned by PON to manage stage 3 restoration works at the Carrington Hydraulic Engine House (CHEH), 106 Bourke Street, Carrington (hereafter referred to as 'the site'). The Department of Planning requested further contamination information to inform the Development Application (DA) for the aforementioned restoration works, Nation Partners was engaged by EJE to undertake a DSI of the site to fulfill this request.

The site is located on Lot 30 of Deposited Plan (DP) 11900075 and the investigation area affected by restoration works featured the main engine room and soils on the western edge and southern façade as detailed in **Figure 2**. The site is owned by the NSW Treasury through a holding company named Port of Newcastle Lessor Pty Ltd (Port Lessor). Port Lessor subsequently granted a 98 year lease of their land, including the site, to Port of Newcastle (PON) who is responsible for the operations and management of the CHEH. The site covers an area of approximately 800 square metres (m²) and is zoned SP1 Special Activities under the State Environmental Planning Policy (SEPP) (Three Ports) under the *Newcastle Local Environmental Plan (2012)*.

Based on the information provided by EJE, the CHEH building is currently vacant, and the main engine room is not accessible to the public due to asbestos contamination identified within the floor grates and sub-floor cavity floor surface of room. The building has gone through two conservation projects, a large masonry conservation repair to the south façade and the accumulator tower during 2018 to 2019 and masonry conservation works to the north, east and west facades during 2021. Lead paint was removed during the 2021 works. Additionally, extensive asbestos removal works were undertaken internally, with most parts of the building now free of asbestos with the exception of the main engine room. It is also understood that the steel floor framing of the main engine room presents poor structural integrity with almost all the columns supporting the cast-iron grates being corroded more than 90% of their sectional area at their base.

PON engaged Verico Asset Integrity Services (AIS) to conduct a remediation options analysis which concluded that the encapsulation of asbestos hazards underneath a floating concrete slab was the best overall option to remediate the asbestos contamination. As a state regulatory requirement, EJE engaged ADW Johnson Pty Ltd to prepare and lodge DA 22/6312 for the proposed stage 3 restoration works on 5 May 2022 to the Department of Planning and Environment. The DA comprised a statement of Environmental Effects (SOEE) which described the Stage 3 restoration works, including the asbestos encapsulation, the installation of a new accessible entry ramp at the site and new landscape features at other locations within the port (not within the building) considered exempt development in accordance with SEPP, 2012.

This DSI will address the source, nature and extent of contamination within the investigation areas of the site and assess potential risks to the environment and human health under the site's current land use.

1.2 Objectives

The objectives of this DSI were to:

- Identify whether contamination may be present at the site as a result of current or historical activities; and
- If contamination is suspected to be present, to characterise the nature and extent of contamination at the site.
- Assess the potential for contamination (if present) to migrate offsite and adversely impact sensitive receptors.
- Assess the risks to human health and the environment under the site's land use.

1.3 Scope of Work

To meet the above objectives, the following scope of work was completed:

Desktop Assessment

- Reviewed historical and publicly available information for the site, including public databases and registers, and existing reports held by PON that provide information and data regarding the contamination conditions of the site. A sampling plan was prepared and provided to EJE showing proposed sampling locations; and
- Reviewed previous investigation reports provided by PON, and these are listed below:

Carrington Hydraulic Engine House Sub-floor Remediations Assessment (Verico AIS, 2022);

Port of Newcastle Baseline Contamination Site Assessment - Stage 1 Summary Report (GHD, 2015);

Port of Newcastle Baseline Contamination Assessment - Vacant and Operational Lands – Stage 2 Summary Report (GHD, 2017); and

Statement of Environmental Effects – Proposed Stage 3 Restoration Works to the Carrington Hydraulic Engine Room (ADW Johnson, 2022).

Job Safety and Environmental Analysis

- Preparation of a job safety and environmental analysis (JSEA) covering specific health, safety, and environmental hazards associated with the site investigation works;
- Performed a Before You Dig Australia (BYDA) search to inform potential sampling constraints and preferential pathways; and
- Reviewed underground services location plan provided by PON.

Investigation Works

- Identified sampling locations and located underground services in collaboration with PON prior to ground disturbance;
- Collection of 14 soil and asbestos samples from 8 different locations within the main engine room, the proposed external ramp area, adjacent to the façade and the western side of the building;
- Implemented decontamination and quality control procedures in accordance with relevant guidelines and standards; and
- Submission of soil samples for analysis by a National Association of Testing Authorities (NATA) accredited laboratory.

DSI Reporting

- Preparation of this DSI report in accordance with the National Environment Protection (Assessment of Site Contamination) Measure 1999 and the Contaminated Land Guidelines – Consultants Reporting on Contaminated Land (NSW EPA, 2020).

1.4 Legislation, Standards and Guidelines

Relevant guidelines and standards made by the NSW Environment Protection Authority (EPA) have been adopted in undertaking this DSI. The documents are listed on the NSW EPA website (https://www.epa.nsw.gov.au/your-environment/contaminated-land/statutory-guidelines) and, as of August 2022, comprise:

- Consultants reporting on contaminated land: Contaminated land guidelines (NSW EPA, 2020);
- Guidelines for the NSW Site Auditor Scheme, 3rd edition (NSW EPA, 2017);

- Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997 (NSW EPA, 2015); and
- Sampling design guidelines (NSW EPA, 1995)¹.

Another guideline approved by the NSW EPA and adopted for this DSI include:

• National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 No. 1 (NEPM; NEPC, 2013).

Other relevant standards and guidelines considered in the development and implementation of this DSI include:

 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soils – Non-Volatile and Semi-Volatile Compounds (Australian Standard AS 4482.1-2005);

¹ It is noted that the Sampling Design Guidelines were recently updated by NSW EPA. However, the investigation works for the site were scoped prior to release of the updated guidelines.

2 Site Information

2.1 Site Location and Description

Table 2.1 summarises location and legal identification information for the site.

Table 2.1 : Site Location and Identification	
Current Site Owner:	Port of Newcastle
Current Site Occupier:	None, the site is currently vacant
Physical Address:	106 Bourke Street, Carrington
Coordinates:	384910.57 m Easting, 6357465.21 m Northing (approximate centre of site) Map Grid of Australia (MGA) Zone 56
Legal Identification:	Part Lot 30 DP 1190075
Site Area:	Approximately 800 m ²
Local Government Area:	City of Newcastle
Zoning:	SP1 Special activities in accordance with SEPP (Transport and Infrastructure)

The site is comprised of the Carrington hydraulic main engine room, and the soils adjacent to the façade and the western perimeter of the CHEH. The location of the site is shown on **Figure 1**, with the layout shown on **Figure 2**.

The land adjacent to the site is characterised by:

- North: Engine House Road, followed by TOLL Express;
- East: PON Dyke Berths 1 and 2;
- South: PON rail tracks, followed by the West Berth; and
- West: Bourke Street, followed by residential properties.

The surrounding land is characterised primarily by commercial and industrial land use to the north, south and east. Land use to the west was characterised by mostly low density residential.

2.2 Current and Historical Land Use

The CHEH is currently vacant, and the main Engine Room sealed off from human access due to an asbestos hazard present within this room. The public plaza is open and in use for casual public visitors.

Historically, the CHEH was built in 1877 and housed the first large scale hydraulic power system to be established in Australia, providing power for the original coal loading cranes along Dyke Point. The CHEH was in operation from its construction in 1877-1878 until its decommissioning in 1967, when the Basin Coal Loader replaced all hydraulic and electric cranes.

Currently vacant, limited original equipment still exists within the CHEH, with one small remnant motor in the generator room, some metal fixtures, gangways and ladders mounted to the internal walls, and various pipework and fragments of industrial archaeology extant in the main engine room sub-floor cavity.

The CHEH is located on the north side of Newcastle Harbour and is situated approximately 100m west of dyke 1. The building is orientated to face Honeysuckle and is prominently viewed from this

hospitality precinct to the south across the water. To the south of the building are PON operational railway lines followed by wharf frontage.

The building is situated approximately 50 south west of the main personnel entry to the PON district and features an open grassy patch surrounded by landscaped gardens and a hardstand section directly in front of the front entrance.

2.3 Environmental Setting

2.3.1 Topography and Hydrology

Topographic contours for the local area indicate that the site elevation is approximately 2 metres (m) Australian Height Datum (AHD). The site itself is generally flat, and currently drains into existing stormwater systems.

2.3.2 Soils, Geology and Hydrogeology

The site is mapped in the NSW 1:100,000 State-wide Geological Series as being man-made fill on Quaternary deposits.

The subsurface conditions at the site are characterised as uncontrolled fill comprising of a mixture of fine sand, gravel and cobble sized particles overlying firm to stiff clays encountered between at about 4-5m depth overlying medium dense sands. Groundwater has previously been encountered at approximately 1.5m depth. (ADW Johnson, 2022)

Based on the GHD, 2017 report, Groundwater depth within the Carrington precinct ranges from 0.5 - 3 metres below ground level (mBGL), and is tidally influenced due to its close proximity to the foreshore. Groundwater flow direction appears to fluctuate dominated by the three main bodies of water: Throsby Creek, the Basin and the Hunter River.

2.3.3 Sensitive Environmental Receptors

The primary sensitive receptors at and adjacent to the site are the residential properties to the east, visitors, workers and trespassers to the site.

Stormwater is potentially discharged into Hunter River, located approximately 200m south of the site. Groundwater potentially migrates towards Throsby Creek, the Basin and the Hunter River.

2.3.4 Acid Sulfate Soils

NSW Planning Portal Acid Sulphate Soils Mapping (2022) indicates that the site is not identified as being affected by acid sulphate soils (ADW Johnson, 2022).

3 Site History and Condition

3.1 Historical Business Directories

A search of GHD's *Stage 1 Baseline Contamination Summary* (2015) and *Google Maps* (2022) revealed the following potentially contaminating sites:

Location	Business Activity	Contaminants of Concern ²
117 – 121 Bourke Street and 92 Hill Street, Carrington	Civil Infrastructure – Historical filling in the Carrington precinct including furnace slag and dredge materials. Former use of the site as engineering works.	Soils - elevated copper, lead, BaP, PAHs, TRH. Groundwater - elevated copper, lead and zinc, TRH and PAHs (incl BaP) Extent of impacts not fully assessed
Dyke Point Containment Cell and Pasminco Ship Loader (Dyke Berth 2) Dyke Road, Carrington	Historic filled/reclaimed area of Dyke Point. Capped landfill cell – Comprises contaminated soils from former dockyard bridge abutments in a containment cell. Spills and leaks around fuel filling manifolds and leaks from underground gas pipeline (Dyke Point Berths) and mobile fuelling tank (Bradken Resources) Current and historical railway use	Soils – elevated TPH above guidelines. Asbestos over HILs, zinc above EILs and TRH above ESLs. Groundwater – elevated TPH, PAHs. Arsenic, copper and zinc above ANZECC (2000) marine water guidelines. Investigations limited to date.
Forgacs Dockyard, 81 Denison Street, Carrington	Historical filling in the Carrington precinct including furnace slag and dredge materials. Former use by Forgacs as a ship maintenance facility. Current/ historical bulk and non-bulk storage – leaks, spills from diesel and USTs/pipework. Historical filling in the Carrington precinct including furnace slag and dredge materials. Denison Street portion used for ship maintenance facility. Waste management – spilt grit blasting sand Wastewater and stormwater management - leaks and spills of contaminated wastewater into underlying soils/groundwater.	Previous investigations identified TPH, PAHs, lead, TBT across the rest of the Forgacs site.
NAT vacant land, Bourke Street, Carrington	Use of historical fill. Historical ore handling practices and use as a rail yard. Historical coal tar pavement along western boundary. Storage of fuels and oils in ASTs and drums.	Soil – elevated heavy metals. Groundwater – elevated copper, lead, cadmium, nickel and zinc above ANZECC (2000) marine water guidelines.

Table 3.1 : Registered Businesses with Historical Contamination Issues within the Carrington Pre-	cinct (Google Mans 2022)
Table 3.1. Registered businesses with historical containination issues within the carrington Free	sinct (Google Waps, 2022)

² Underground Storage Tanks (USTs) Above Ground Storage Tank (AST), benzo(a)pyrene (BaP), polycyclic aromatic hydrocarbons (PAHs), Total Recoverable Hydrocarbons (TRH) Total Petroleum Hydrocarbons (TPH), Health Investigations Levels (HILs), Ecological Investigation Levels (EILs), Ecological Screening Levels (ESLs) Australian and New Zealand Environment and Conservation Council (ANZZECC), tributyltin (TBT)

3.2 Historical Maps and Aerial Photography

A review of historical documents provided in GHD's *Baseline Contamination Site Assessment Vacant and Operational Lands Stage 2 Summary Report* (2017) provided the following summary of historical site uses for the Carrington precinct:

- The Carrington precinct was formed in the 1800s upon land reclaimed utilising ballast and dredged sand and was complete by 1874;
- Historically, the precinct has been utilised for coal exports until 1989, when the Basin Coal Loader ceased operations. Port Waratah Coal Services (PWCS) continues to utilise the precinct for these purposes;
- In 1968, the northern portion of the precinct housed coal stockpiling facilities, these activities remained until 1976 when PWCS acquired operations and expanded their coal exporting capacity through the construction of Dyke Berths 4 and 5;
- The southern section of the precinct has historically been dominated by ship building activities, and the export of coal, metals and ores;
- The eastern basin was historically used for coal loading;
- The western basin was initially dominated by railway until 1975, where it was replaced by its current configuration;
- Commercial Metals Company (CMC) site has been utilised for engineering and iron founding from 1903 to present; and
- The Dyke 2 original wharf (located at the northern end of Dyke Point) was historically used for coal storage until 1982 when it was utilised as a mineral ore storage facility and loader. In 2003, Carrington Facilities Pty Ltd occupied the wharf, and then Conports. Both utilised the wharf for receipt, storage and ship loading facilities for bulk mineral concentrates.

Historical imagery provided by Metromap (2022) from 2007 to present illustrates no obvious construction within the precinct.

3.3 Government and Regulatory Searches

Seven sites were identified within the list of NSW contaminated sites notified to EPA where regulation under the *Contaminated Land Management Act 1997* (CLM Act) was not required (Lotsearch, 2022):

- CMC Australia Pty Ltd, 100 m west of the site;
- Carrington Redevelopment Site, 600 m northwest of the site;
- Forgacs Dockyard, 700 m southwest of the site;
- NAT Vacant Land, 220 m east of the site;
- Dyke Point Containment Cell, approximately 400m southeast of the site;
- Carrington Coal Tar Pavements, 100 m northeast of the site; and
- Pasminco Ship Loader, 280 m northeast of the site.

3.4 **Previous Investigations and Assessments**

• Statement of Environmental Effects (ADW Johnson 2022)

Verico AIS completed a hazardous materials survey within the CHEH during June 2018. This survey analysed 87 dust, dirt and debris samples collected from areas within the CHEH, 22 of these samples contained asbestos fibre (Ampcontrol Report – Port of Newcastle, Carrington Engine House, Dust Sampling Report Rev 3, June 2018).

PON undertook extensive internal asbestos removal works, clearing all parts of the building of an asbestos hazard, except for the main engine room. The main engine room has been cleaned of asbestos from the ceiling down to the level of the floor grates, however, inspections have found there were asbestos fragments embedded in the sub-floor surface and potentially contaminated dirt and debris was present within the cast iron floor grates.

Decontaminating the floor grates and removing the embedded asbestos fragments from the floor surface was considered impractical and work was ceased to consider alternative options.

The main engine room has been sealed, and access only allowed under controlled conditions and using appropriate personal protective equipment.

Asbestos cement fragments embedded in the sub-floor surface are bound in a solid bituminous like material and were considered a bonded asbestos material. As such, they will only become a health hazard if acted upon by a mechanical action to disturb the asbestos fibres.

Asbestos fibre within the dirt and debris associated with the cast iron floor grates will not be bonded and can be liberated into the air if disturbed. This material can be considered as friable asbestos containing material.

Through a rigorous options analysis process, Stage 3 Restoration Works to encapsulate the asbestos hazard underneath a floating concrete slab has been selected as the best overall solution to the current issues the building faces (as opposed to removal of the asbestos material from the site entirely), however there is no proposed remediation of land associated with the development.

The previous restoration works also identified lead paint within the building, but this was removed as part of the Stage 2 works.

The SOEE concluded that the proposed restoration works illustrates that the proposal will satisfy both statutory and merit-based planning considerations.

• FID1016 – Port of Newcastle – AEST96642 – Verico-Final Report (Verico AIS, 2021)

Australian Safter Environment & Technology Pty. Ltd. (ASET) tested two samples for analysis for asbestos. The samples were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method. Both samples consisted of a fragment of hard cement material that was used as packing between sandstone blocks and columns. Neither sample had asbestos detected.

• CHEH Ext Brick Mortar report (Verico Ais, 2021a)

Representative sampling of the mortar between the bricks on the west, east and north sies of the CHEH was carried out in January 2021. Eight samples were collected. No asbestos was detected in the samples collected.

• Baseline Contamination Study (GHD, 2015 & 2017)

PON commenced its 98-year lease of the Port Lands from the NSW Government on 30 May 2014. In relation to clauses in the lease, PON required an understanding of the contamination status of the Port Lands to inform contamination provisions in the lease. Further to this, PON had approximately 200 hectares of vacant land available to lease, and required an understanding of the potential risks to lessees (and their operations) and to be able to understand if lessee activities have exacerbated existing contamination or generated new contamination. These investigations culminated in a Baseline Contamination Study and featured two stages:

- Stage 1 Desktop Study and Gap Analysis
- Stage 2 Field Investigations

Seven soil samples were collected from the site as a part of these field investigations and exceedances were observed in three of these samples when compared to the NEPM 2013 EIL - Commercial/Industrial criteria. CAH_MW02_0.0-0.2 saw exceedances of copper and zinc (453 mg/kg and 2500 mg/kg respectively), CAH_MW2_1.5-2.0 saw exceedances in nickel (61 mg/kg) and CAH01_0.05-0.2 saw an exceedance in zinc (653 mg/kg). Asbestos was below the limit of reporting (LOR) in one sample

 $(CAH01_0.05-0.2)$ and above the LOR in another sample $(CAH01_0.5-0.7.)$ Soil samples from deeper soils (1.5m - 2.2m) were collected at locations CAH_MW01 and CAH_MW02, concentrations of heavy metals such as arsenic, copper, lead and zinc were below the relevant criteria.

Three groundwater samples were collected from the site as part of these field investigations, and samples were analysed for heavy metals, TRH, BTEXN, PAHs, pesticides and, polychlorinated biphenyls (PCBs). Only concentrations of heavy metals were detected. Exceedances were observed in two of the samples when compared to the NEPM 2013 Table 1C GILS, Marine Waters criteria. CAH_MW1 saw exceedances in arsenic, copper, nickel and zinc (0.048, 0.002, 0.01 and 0.112 mg/L respectively) and CAH_MW02 saw exceedances in copper (0.003 mg/L). Lead concentrations were below the laboratory LOR.

The report concluded that despite exceedances of the GILs for metals across all precincts, these impacts were considered to be associated with historical filling and industrial use and were not considered to be an issue for commercial/industrial land use. Asbestos impacts were considered to pose a low risk to human health based on the low concentrations and limited site usage.

4 Assessment Methodology

4.1 **Potential Contamination Sources**

Based on the information summarised in **Section 3**, the following onsite areas were identified as primary sources of potential contamination:

- Contamination associated with historical activities inside the main engine room, primarily the hydraulic power system which was operational from its construction in 1877-1878 until its decommissioning in 1967;
- Asbestos and lead within the main engine room, although the main engine room has been cleaned from the ceiling down to the level of the floor grates, inspections have found asbestos fragments embedded in the sub-floor surface and potentially contaminated dirt and debris was present within the cast iron floor grates; and
- Fill material surrounding the main engine room.

Based on the information available, potential offsite sources of contamination were identified as widespread activities associated with extensive historical industrial use, including coal handling and stockpiling, railway activities, exportation of coal, metals, ores and minerals.

4.2 Potential Contaminants of Concern

Based on the potential contamination sources described above, in **Section 4.1**, the following contaminants of concern were identified for the DSI:

- Heavy metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury);
- TRH and BTEX;
- PAH;
- Organochlorine pesticide (OCP) and organophosphorus pesticides (OPP)
- PCBs; and
- Presence / absence of asbestos in soil;

4.3 **Potential Receptors**

Based on the condition, environmental setting and proposed remediation of the site, the following potential receptors to contamination at the site (if present) were identified:

- Visitors, maintenance and construction workers and trespassers; and
- Throsby Creek, the Basin and Hunter River

4.4 Preliminary Conceptual Site Model

A conceptual site model (CSM) describes the contamination sources, impacted media, receptors and linkages between the sources and receptors (NEPC, 2013). A CSM is an essential element for contaminated site assessments as it details the potential mechanisms by which contamination can migrate in the environment and impact human and environmental receptors, and the corresponding need for remediation and/or management activities. The NEPM (NEPC, 2013) provides guidance on the development of CSMs for contaminated sites, noting that the purpose of the CSM is to identify existing or potential complete pathways between known or potential contamination sources and receptors. Essential elements required in a site contamination conceptual model include (NEPC, 2013):

- Known and potential sources of contamination and contaminants of concern;
- Environmental media known or potentially impacted by contamination;

- Contaminant migration and exposure pathways; and
- Existing or potential future human and environmental receptors.

A critical concept in the development and application of contamination CSMs is the source – pathway – receptor relationship informed by known and potential sources of contamination, the environmental media impacted by contamination, potential migration and exposure pathways, and the receptors that may be exposed to contamination. In situations where the source – pathway – receptor (SPR) relationship is incomplete there can be no risk to receptors from contamination, and as a result remediation and/or management is not required.

Table 4.1 presents the potential SPR linkages identified for the site from information on the site's history and current conditions and setting and used to develop the preliminary CSM for the site. The data collected through the DSI will be used to refine the preliminary CSM presented in **Table 4.1**.

Contaminant Source and Media	Migration / Exposure Pathway	Receptors
Main Engine Room		
Contamination of surface	Dermal contact / ingestion	Current and future site workers
and groundwater from historical activities / contaminated fill material / offsite contamination	Dust / odour / vapour inhalation	Current and future site workers
	Offsite migration via regional groundwater to aquatic receiving environments	Aquatic ecosystems associated with Throsby Creek, the Basin and the Hunter River.
Area adjacent to the building façade and the western perimeter		
Contamination of surface	Dermal contact / ingestion	Current and future visitors, site workers and trespassers
and sub-surface soils and groundwater from historical activities / contaminated fill material / offsite contamination	Dust / odour / vapour inhalation	Current and future visitors, site workers and trespassers
	Offsite migration via stormwater runoff and regional groundwater to aquatic receiving environments	Aquatic ecosystems associated with Throsby Creek, the Basin and the Hunter River.

Table 4.1 : Preliminary CSM

4.5 Data Quality Objectives

The DSI was designed using the Data Quality Objective (DQO) process endorsed by the NSW EPA and described in the *Guidelines for the NSW Site Auditor Scheme (3rd Edition)* (NSW EPA, 2017) and Australian Standard AS4482.1-2005. The DQO process is a seven-step planning approach to sampling design for data collection activities that support decision making.

The approach taken by Nation Partners in accordance with the DQO process is presented below.

Step 1. Define the Problem

This step defines and describes the problem, identifies the planning team, develops the CSM and identifies the data needed, resources, constraints and deadlines of the project.

Objective:	Gather sufficient data to:
	• Identify whether contamination may be present at the site as a result of current or historical activities;
	 If contamination is suspected to be present, to characterise the nature and extent of contamination at the site;
	 Assess the potential for contamination (if present) to migrate offsite and adversely impact sensitive receptors.
	 Assess the risks to human health and the environment under the site's land use.
Contamination Issue:	Current and former uses of the site may have resulted in contamination of soils and/or groundwater at or adjacent to the site.
	Based on site information provided by PON, previous investigations by Verico AIS (2022) and GHD (2017) and Nation Partners' field work investigation, possible sources of contamination at the site are summarised in Section 4.1 .
Project Driver:	EJE wishes to understand the contamination condition of the site and satisfy the Department of Planning and Environment's request for a DSI with regard to the DA for the proposed restoration works at the CHEH.
Project Team:	Nation Partners Project Director: Luke Clements
	Nation Partners Project Manager: Laura Martinez
	Nation Partners Environmental Consultant: Nelson Phillips
CSM:	The CSM is included in Section 4.4 of this report.
Resources and Project	The project resources/personnel have been listed above. The fieldwork investigation was completed in August 2022.
Timeframes:	Site investigation activities targeted the areas to be disturbed as part of the Stage 3 Restoration works and included the collection of soil samples. The landscape features work's area was not assessed as these are not located within or near the building and these have been exempted in accordance with SEPP, 2012.
Community Concerns:	No particular concerns, however due to the heritage status of the CHEH, intrusive internal works are limited.
Approvals Requirements:	No approval was required from any external regulatory authorities to undertake the DSI. Nation Partners liaised with PON as the land manager.

Step 2. Identify the Decision

This step identifies the key questions and objectives of the study, alternative actions or outcomes that may result based on the outcomes.

Decision Statements	The output of the investigation must be suitable to answer the following questions with regards to the media of concern:
	Is contamination present at the site, and to what extent?
	• What media are potentially contaminated that could represent a risk to human or environmental receptors, to PON as the land manager, or to future development?
	• What risks, if any, does the contamination represent to human health or the environment in the context of the site's land use?
Guidelines	The relevant guidelines have been described in Section 1.4 and environmental and human health criteria have been outlined in Section 4.6 .

Step 3. Identify Information Inputs

This step is used to determine the types and sources of information needed to inform the study, specify performance or acceptance criteria, and determine the availability of appropriate sampling and analyses methods.

Types and Sources of Information	 Information contained in the proposal (Nation Partners, 2022) Land use history (refer Section 2) Previous environmental assessments and investigation data for the site (refer Section 3.4) Use of field investigation techniques to assess the presence of contamination (soil sampling) Visual observations of waste materials and condition of soils Screening with a photo-ionisation detector (PID) to assess the potential presence of volatile contaminants Observations, descriptions, photographs, logging, and sample data to describe the type, extent, volume, distribution, and speciation of contamination
Target Media	Soil (groundwater to be assessed via desktop review of existing data)
Contaminants of Concern	The contaminants of concern to be investigated are: • 8 metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury); • TRH/ BTEX; • PAH; • OCP/ OPP; • PCB; and • Presence / absence of asbestos in soil;
Receptors of Concern:	 Potential receptors that were considered by the study include: Current and future visitors; Workers / contractors associated with the remediation of the main engine room; Maintenance workers; and Nearby bodies of water such as Throsby Creek, the Basin and Hunter River.
Assessment Criteria:	The soil quality criteria have been outlined in Section 4.6.1
Sampling and Analysis Methods:	Appropriate sampling and analysis methods were identified for the investigation and are described in Section 5.2 .

Step 4. Define the Boundaries of the Study

This step identifies the spatial and temporal boundaries and access constraints for the investigation.

Spatial Limit:	The spatial boundary of the site is shown in Figure 1 .
	The vertical limit of the investigation was the depth of sampling locations described in Section 5.
Temporal Limit:	The temporal boundary of the investigation was the period in which sampling was conducted (August 2022).
Access Constraints:	The site is managed by PON and access to the site for sampling was guaranteed.

Step 5. Develop the Analytic Approach

A decision rule based on both qualitative and quantitative information describing the condition of the site with measurable evaluation criteria.

Decision Rules	The decision rules have been developed based on the underlying project drivers and the corresponding objectives of the site investigation program.
	The decisions required include:

•	Whether contamination exists in soil at the site that could present a risk to human or environmental receptors, or to PON as the land manager; and
•	If there is potential for contamination (if present) to migrate offsite and adversely impact sensitive receptors.
and field for the in identified	will be considered to not pose a risk if analytical results, considered in the context of the site observations a screening protocols, for the media sampled and analysed are less than the assessment criteria adopted nvestigation (refer Section 4.6). Where exceedances of the adopted site assessment criteria are d, these will be assessed in the context of the current and projected future land use (commercial / al land use) to assess the potential risks to receptors.

Step 6. Specify Performance or Acceptance Criteria

This step aims to specify the performance or acceptance criteria for the data in order to minimise the possibility of making erroneous decisions or failing to keep uncertainty within acceptable limits, and to specify acceptable limits of uncertainty.

Documentation and	Appropriate sampling locations are selected that target areas of potential contamination
Data Completeness:	Sampling locations are adequately documented
	 Completion of field records, chain of custody forms, lab test certificates from National Association of Testing Authorities (NATA) registered laboratories
	Samples analysed for appropriate contaminants of concern
Data Comparability:	Use of a NATA certified laboratory using NEPM procedures
	Use of a NATA certified check laboratory
	Use of appropriate sampling, storage and transportation of samples
Data	Collection of representative samples from each sampling location
Representativeness:	 Collection of representative samples from targeted locations and ensuring that targeted sampling is considered in the correct context (i.e. representative of the area of environmental concern (AEC) and not necessarily of the broader site)
	Use of appropriate techniques for the sampling, storage and transportation of samples
Precision and	Use of appropriately trained experienced and qualified field consultants
Accuracy:	Collection of QA and QC samples at a minimum rate of 10%
	Achieve laboratory QC criteria
	Matrix and surrogates return acceptable results
	Laboratory duplicates are within acceptable ranges
	Blind field duplicates are within acceptable ranges
	• Laboratory limits of reporting (LORs) or practical quantification limits (PQLs) are within acceptable ranges

Step 7. Develop the Detailed Plan for Obtaining Data

This step combines all the information and outputs to design a sampling and analysis program to obtain the data required to achieve the performance or acceptance criteria and achieve the objectives of the investigation. The investigation approach and methodology are presented in **Section 5**.

4.6 Assessment Criteria

The following section outlines the assessment criteria adopted for this DSI based on the commercial/industrial characteristics of site and its surrounds. The criteria have been sourced from the NEPM (NEPC, 2013) or derived from guidance identified in **Section 1.4.**

4.6.1 Soil Assessment Criteria

For the purposes of this DSI soil assessment criteria were adopted from the NEPM Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater (NEPC, 2013), which have been

endorsed by the NSW EPA. The NEPM guidelines (NEPC, 2013) provide investigation levels and screening levels for the protection of human health (Health Investigation Levels [HILs] and Health Screening Levels [HSLs]) and for the protection of ecosystems (Ecological Investigation Levels [EILs] and Ecological Screening Values [ESL]) for a range of contaminants and land use scenarios.

Health investigation levels (HILs) are generic and apply across Australia to all soil types generally to a depth of 3 m below surface. Health screening levels (HSLs) for petroleum hydrocarbons depend on physicochemical properties of soil as it affects hydrocarbon vapour movement in soil and the characteristics of building structures. They apply to different soil types, land uses and depths below surface to >4 m and have a range of limitations. Ecological investigation levels (EILs) depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil, which corresponds to the root and habitat zone of most ecological species. Ecological screening levels (ESLs) for petroleum hydrocarbon materials broadly apply to coarse and fine grained soils and various land uses. They are applicable to the top 3m of soil.

Investigation and screening levels provide the basis for a Tier 1 assessment as defined in the NEPM (NEPC, 2013), which involves the comparison of representative site data for concentrations of contaminants with generic investigation and screening levels for nominated land use scenarios to determine the need for further assessment or management.

The land use scenario applicable to the site is *commercial/industrial land use*, so the soil criteria adopted for this DSI were HIL(D) and HSL(D).

EILs have been developed for selected metals and organic substances and are applicable for assessing risk to terrestrial ecosystems. The EILs adopted, as shown in **Table 4.2**, are based on generic criteria and soil-specific criteria.

 Table 4.2 summarises the soil assessment criteria adopted for this DSI.

Contaminant of Concern	Human Health	Ecological	Criteria Derivation Notes
Heavy Metals			
Arsenic	3000	170	 Adopted human health criteria based on HIL(D)prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013); and Adopted ecological criteria based on the EIL prescribed in the NEPM Schedule B(1), Table 1B(5) (NEPC, 2013), generic EIL in soils and a land use of 'commercial/industrial'.
Cadmium	800	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
Chromium (IV)	3000	-	 Value for chromium (VI) used for health-based criteria as a conservative measure; value for chromium(III) used for EIL; Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial (NEPC, 2013); and
Copper	250000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) commercial/industrial land use (NEPC, 2013);
Lead	1500	1800	 Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013); and Adopted ecological criteria based on the EIL prescribed in the NEPM Schedule B(1), Table 1B(4) (NEPC, 2013), generic EIL in soils and a land use of 'commercial/industrial'.
Mercury	4000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
Nickel	4000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
Zinc	400000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
OCPs and OPPs			
DDT + DDE + DDD	4000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
DDT	-	640	Adopted ecological criteria based on the EIL prescribed in the NEPM Schedule B(1), Table 1B(6) (NEPC, 2013), soil-specific contaminant limits for a land use of 'commercial/industrial'.
Aldrin and Dieldrin	50	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
Chlordane	560	-	
Endrin	100	-	
Hexachloroben zene (HCB)	85	-	
Endosulfan	2,000	-	
Heptachlor	50	-	
Methoxychlor	2,700	-	
PCBs			
PCB	8	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).
BTEX			
Benzene	3	95	

Contaminant of Concern	Human Health	Ecological	Criteria Derivation Notes	
Toluene	-	135	Adopted human health criteria based on HSL(D) for vapour intrusion prescribed	
Ethylbenzene	-	185	in the NEPM Schedule B(1), Table 1A(3) for commercial/industrial land use ir silt at depths 0 m to < 1 m (NEPC, 2013).	
Total Xylenes	-	95	 Adopted ecological criteria based on the EIL prescribed in the NEPM Schedule B(5), Table 1B(5) (NEPC, 2013), soil-specific criteria for fine soil and land use of 'Commercial and industrial'. 	
TRH				
F1 Fraction (TRH C ₆ -C ₁₀ minus BTEX)	250	215	• Adopted human health criteria based on HSL(D) for vapour intrusion prescribed in the NEPM Schedule B(1), Table 1A(3) commercial and industrial land use in silt at depths 0 m to < 1 m (NEPC, 2013).	
F2 Fraction (TRH >C ₁₀ -C ₁₆ minus naphthalene)	-	170	 Adopted ecological criteria based on the ESL prescribed in the NEPM Schedule B(1), Table 1B(5) (NEPC, 2013), soil-specific criteria for fine soil and land use of 'commercial and industrial'. 	
F3 Fraction (TRH C ₁₆ -C ₃₄)	-	2500	Adopted ecological criteria based on the ESL prescribed in the NEPM Sched B(1), Table 1B(6) (NEPC, 2013), soil-specific criteria for fine soil and land use	
F4 Fraction (TRH C ₃₅ -C ₄₀)	-	6600	of 'commercial and industrial'.	
PAHs				
Benzo(a)pyrene	40	1.4	 There is no separate HIL for benzo(a)pyrene in the NEPM therefore the adopted human health criteria is based on the benzo(a)pyrene toxic equivalence quotient (TEQ) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013). The benzo(a)pyrene TEQ provides a toxicity- weighted sum of analyte concentrations for a specific list of PAHs in order to provide a single, objective concentration as an HIL; Adopted ecological criteria based on the ESL prescribed in the NEPM Schedule B(1), Table 1B(6) (NEPC, 2013), soil-specific criteria for fine soil and land use of 'Urban residential and public open space'. 	
Total PAHs	4000	-	Adopted human health criteria based on HIL(D) prescribed in the NEPM Schedule B(1), Table 1A(1) for commercial/industrial land use (NEPC, 2013).	
Naphthalene	-	370	 Adopted human health criteria based on HSL(D) for vapour intrusion prescribed in the NEPM Schedule B(1), Table 1A(3) for commercial and industrial land use in silt at depths 0 m to < 1 m (NEPC, 2013). Adopted ecological criteria based on the EILs prescribed in the NEPM schedule table 1B(4) for commercial and industrial land use (NEPC, 2013) 	

This DSI did not include the quantitative assessment of the percentage of asbestos in soils, and as such the criteria from the NEPM were not adopted for this assessment. Where potential asbestos is identified, the presence or absence of asbestos will be confirmed via laboratory analysis and the results discussed in the context of the NEPM criteria.

5 Investigation Approach and Methodology

This section describes the sampling plan undertaken by Nation Partners for the DSI. The investigation targeted the Stage 3 restoration works: the main engine room and proposed accessed entry ramp.

5.1 Investigation Scope

Nation Partners undertook soil hand augering and collection of samples on 24 August 2022.

PON service drawings were used to identify potential underground assets in conjunction with BYD plans obtained prior to the site investigation and valid for the dates of the investigation.

Sample types and locations are presented on the attached **Figure 2**. The location and number of samples collected, and the rationale for each sampling location, is described in **Table** 5.1. Photographs of the works are provided in **Appendix A – Photo Appendix**.

Sample Media and Method	Number of Locations and Sample Identification	Rationale	
Soil - Surface Sample (hand tools)	2 Locations (SB01-SB02)	 Given the nature of the soil material, accessibility and heritage issues in the main engine room, drilling was not possible Two surface soils samples were taken using a trowel Sample locations were chosen where sampling was possible and to best reflect the nature of contamination in the room 	
Soil – Hand Auger	6 locations (SB03-SB08)	 Six bore holes were excavated until refusal, to a depth of between 0.35 and 0.8 mBGL using a hand auger Locations were chosen to best reflect the nature of the fill material that will be affected by restoration works surrounding the CHEH and to cover areas immediately adjacent to the main engine room. 	

Table 5.1 : Summary of Sampling Program

5.2 Fieldwork Procedures

5.2.1 Health and Safety

A task specific JSEA, was prepared and implemented for the works. Personnel working in the field on the project were required to read, understand, sign and conform to the JSEA prior to and during the investigation.

5.2.2 Soil Sampling

The drilling works were conducted using a hand auger. Soil bores intended to achieve 1 mBGL depth or until natural material was encountered. Due to the nature of fill material, refusal due to large gravel pieces or geofabric material was encountered at depths between 0.35 and 0.8 mBGL. Surface soil sampling works using a trowel were conducted in the main engine room.

The following general procedures were adopted during soil sampling:

- Lithological soil logging was completed at each location, with bore logs included in Appendix B Bore Logs;
- The presence of anthropogenic materials or indicators of contamination was recorded by the field consultant, and a photographic record of soils was taken (refer to Appendix A – Photo Appendix);
- Samples were placed in laboratory-supplied containers, filled to reduce headspace and transferred to an iced cooler for transport to the project laboratory under chain-of-custody (CoC) documentation;

- Reusable sampling equipment, including hand augers and trowels, was decontaminated between the collection of each sample and rinsate blank samples were collected to demonstrate decontamination;
- Investigation locations were recorded by Global Positioning System (GPS); and
- Investigation locations were reinstated by returning excavated spoil to the borehole.

5.2.3 Decontamination

The decontamination of re-usable sampling equipment, including hand augers and trowels, was undertaken between sampling locations. Decontamination was achieved by scrubbing equipment in a solution of Liquinox (PFAS-free detergent) and tap water. Rinsate samples were collected to demonstrate decontamination.

5.2.4 Data Review and Verification

All field data and laboratory analytical data was compiled and evaluated against the project DQOs upon completion of the site investigation. Laboratory results were checked for missing or incorrect data. Data was also checked and validated using ESdat online, **see Appendix D - Field QA/QC Assessment.**

5.3 Laboratory Analysis

Analytical laboratories accredited by NATA were engaged for the analyses of primary and secondary samples from site investigation activities as described in **Table 5.2**. The primary analytical laboratory was ALS Environmental (Newcastle, NSW) and the secondary analytical laboratory was Eurofins (Girraween, NSW).

Table 5.2 : Laboratory Analytical Schedule

Sample Type	Number of Primary Samples	Analytical Schedule
Soil (fill material)	10	TRH, BTEX, PAH, 8 metals, OCP/OPPs and PCBs, asbestos

6 Investigation Results

The results of the sampling and data collection activities undertaken for this investigation are described in this section, including field observations and laboratory results.

6.1 Field Observations

Observations and data collected during fieldworks are provided below. Photographs are provided in **Appendix A – Photo Appendix.** Calibration records for the PID used during the investigations are provided in **Appendix C – Calibration Certificates**.

6.1.1 Soil

The description and condition of soils encountered during the investigation were recorded in the bore logs included in **Appendix B – Bore Logs.** Three distinct soil sequences were encountered as described below.

- Due to the nature of the soils and heritage significance within the main engine room, drilling was
 impractical. Surface soils were taken where possible using a trowel to clear the area of faeces and
 then samples were scraped and collected. The soils were observed to be a brown silty clay with
 white flecks of potentially asbestos containing material, the soil had solidified over time and was
 generally covered by a black oily material.
- External boreholes SB03, SB04, SB05 and SB08 encountered fill material until refusal at depths of between 0.35 and 0.6 mBGL. These soils were categorised as a mix of silt and sand, black with traces of yellow sand, some gravel and coal inclusions, and moist. PID levels for these soils ranged from 2.1 – 1.6 ppm.
- Boreholes SB06 and SB07 encountered a different fill material that had noticeably fewer visual contaminants than other boreholes and was confirmed by a PON representative to be a different fill material. These boreholes ranged from a depth of 0.5 to 0.8 mBGL and had PID levels of 1.6 ppm. The fill from these boreholes was categorised as sandy silt, black with traces of yellow sand and gravel.

A subset of the soil samples collected were selected for laboratory analysis following a review of field observations.

PID readings were generally low, indicative of low volatile contamination levels, and are shown on the bore logs (refer **Appendix B – Bore Logs**).

6.2 Laboratory Analytical Results

Laboratory results are described in the following sections, including comparison to the adopted investigation levels detailed in **Section 4.6.1**. Summary tables of laboratory results are provided in **Tables A** to **C**. Complete laboratory analysis certificates are included in **Appendix E – Laboratory Certificates**.

6.2.1 Soil Results

Laboratory results for soil samples submitted for analysis are summarised and compared with the adopted soil assessment criteria in **Table A**. Results were below the adopted human health criteria except for the following:

• Lead concentrations exceeded the human health assessment criterion (1500 mg/kg) in the two samples from the main engine room SB01_0.0 and SB02_0.0 (3880 and 11600 mg/kg respectively).

Results were below the adopted ecological assessment criteria except for the following:

C10-C16 (F2 minus Naphthalene) and C10-C16 exceeded the ecological screening level (both 170 mg/kg) in one sample SB02_0.0;

- C16-C34 (F3) concentrations exceeded the ecological assessment criterion (2500 mg/kg) in two samples SB01_0.0 and SB02_0.0 (3340 and 3290 mg/kg respectively); and
- The BaP concentration exceeded the ecological screening limit criterion (1.4 mg/kg) in sample SB02_0.0 (18 mg/kg).

No detections were observed during analysis for the presence / absence of asbestos and results are summarised in **Table B**.

Exceedances of the human health and ecological soil assessment criteria adopted for this investigation are presented on **Figure 3**.

7 Assessment of Site Contamination

This section provides discussion and analysis of the observations and analytical results with reference to the objectives of this investigation and presents the revised CSM.

7.1 Nature and Extent of Contamination

7.1.1 Fill Material

Soils surrounding the main engine room and proposed entry ramp.

As described in **Section 6.1.1**, two distinct fill materials were observed to surround the southern façade and western edge of the CHEH, this was confirmed by a PON representative. The first fill type is understood to be older and was encountered in soil bores SB03, SB04, SB05 and SB08 to a depth of at least 0.6 mBGL. Material excavated from these locations was described as a mix of sand and silt, black with traces of yellow sand and gravel, and displayed visual contaminants such as coal, various forms of aggregate and geofabric pieces.

The second type of fill was encountered at boreholes SB06 and SB07 to a depth of at least 0.8 mBGL. Material excavated from these locations was described as sandy silt, black with traces of yellow sand and gravel, and displayed no odour or visual contaminants.

Both fill materials exhibited concentrations of heavy metals, TRH and PAHs which are typically found within a commercial/industrial land use, with no exceedances of health and ecological investigation levels. Based on the historical land use of the site and its surrounds, the concentrations of contaminants observed are likely associated with the fill material present at the site and/or from onsite and offsite historical activities, such as ship maintenance facilities, bulk and non-bulk storage of petroleum/diesel including USTs, dockyard operations, fuel filling manifolds, underground gas pipelines, mobile refuelling tanks, coal and rail yard operations.

Soils within the main engine room

Soils within the main engine room saw over 100 years of various oil and other mechanical discharges being deposited on its surface. As a result, soils have solidified, and in conjunction with its heritage significance, drilling was impractical. Surface samples were taken at two locations within the main engine room, and analytical results indicated that soils contain concentrations of heavy metals, TRH, and PAHs and saw HIL D exceedances for lead at both locations, SB01 and SB02. Environmental screening exceedances were encountered at both SB01 and SB02 for C16-C34 (F3). Concentrations of C10-C16 and BaP exceeded the ecological criteria at SB02.

The elevated lead concentrations are likely caused by chipping or peeling paint used within the heritage building. Data reviewed from previous investigations in deeper soils (1.5m - 2.2m) showed lower concentrations of lead to the southwest of the main engine room, and no concentrations of lead were detected to the north of the room. Lead is also known to be immobile and to have low solubility in soils reducing the potential for lead contamination to have reached deeper soils and/or groundwater at levels that could pose a significant risk to human health and/or the environment, see **Section 7.1.3.** Still, the existing lead levels detected in surface soils within the main engine room are likely to pose a risk to workers accessing the area.

PON currently requires health and safety protocols to be followed by everyone accessing the site, including the need to wear asbestos protective gear, additionally managing any risk posed by the existing lead contamination. Further, the proposed Stage 3 restoration works includes the encapsulation of asbestos under a floating concrete slab, which will address the pathway for future visitors, workers and/or trespassers to be exposed to risks caused by the presence of lead within the soils of the main engine room.

7.1.2 Asbestos

Asbestos was not detected in the samples collected for this investigation, and this could potentially be due to the asbestos removal works conducted as part of previous restoration works (2020). Despite asbestos not being detected, past assessments identified asbestos currently present within the floor grates and sub-floor cavity floor surface of the main engine room of the building. Therefore, the investigation cannot disregard the potential for asbestos to be present.

A remediation options analysis has already been completed and concluded that the best remedial option was encapsulating the asbestos hazard beneath a floating concrete slab. These works will contain the asbestos contamination and address the pathway for potential asbestos exposure for those accessing the site.

7.1.3 Groundwater

Although groundwater samples were not collected as part of this investigation, historical contamination data were reviewed to assess the potential for lead to infiltrate sub-surface soils to deeper soils and impact the groundwater of the area. Based on the *Stage 2 Summary Report* (GHD, 2017) findings, lead concentrations were not detected in the three samples collected, indicating that onsite lead soil concentrations have not impacted groundwater. The investigations saw exceedances of arsenic, copper, nickel, and zinc concentrations in two of the three samples when compared to the NEPM 2013 Table 1C GILS, Marine Waters criteria. These were attributed to background conditions associated with the industrial use of the precinct.

7.2 Revised CSM

Table 7.1 presents the revised CSM for the site based on the SPR linkages identified in the preliminary CSM (refer **Table 4.1**) and updated with the findings from investigations and data collection activities undertaken for this DSI. The revised CSM provides an assessment of the viability of the SPR linkages identified.

Table 7.1 : Revised CSM

Source-Pathway-Receptor Assessment
Current land use: Complete, as site workers would potentially be exposed to contaminated fill material. The site is currently unoccupied and secured from access. PON is aware of the contamination and has placed health and safety protocols mitigating the risk to human receptors. No access to groundwater. ssers Projected future land use: Incomplete unless soils disturbed, future visitors and site workers will not be exposed to contaminated fill material due to the proposed asbestos encapsulation works. However, contamination remains, and if soils were to be disturbed, linkage to receptors would be present. No access to groundwater. The remaining contamination will require long-term management.
Current land use: Complete, as site workers would potentially be exposed to contaminated fill material. The site is currently unoccupied and secured from access. PON is aware of the contamination and has placed health and safety protocols mitigating the risk to human receptors. Ssers Projected future land use: Incomplete unless soils disturbed, despite future visitors and site workers will not be exposed to contaminated fill material due to the proposed asbestos encapsulation works. However, contamination remains, and if soils were to be disturbed, linkage to receptors would be present. The remaining contamination will require long-term management.
by Creek, the Current and future land use: Incomplete , as sample results from previous investigations did not record concentrations of contaminants that would indicate linkage to the existing contamination of the site. There were no concentrations of lead, TRH and benzo (a) pyrene detected in nearby locations.
rosi

Contamination of surface	Dermal contact / ingestion	Current and future visitors, site workers and trespassers	<i>Current and future land use: Incomplete,</i> as sample results for SB03 – SB08 did not record concentrations of contaminants above the adopted site assessment criteria under the commercial and industrial land use,
and sub-surface soils and groundwater from historical activities / contaminated fill material	Dust / odour / vapour inhalation	Current and future visitors, site workers and trespassers	indicating that the source is unlikely to pose a risk to human and ecological receptors. No access to groundwater.
/ offsite contamination	Offsite migration via stormwater runoff and regional groundwater to aquatic receiving environments	Aquatic ecosystems associated with Throsby Creek, the Basin and the Hunter River.	Current and future land use: Incomplete , as sample results from previous investigations did not record concentrations of contaminants that would indicate linkage to the existing contamination of the site.

Based on the results of the DSI, the revised CSM for the site presented in **Table 7.1** indicates viable SPR linkage for current and future site workers, visitors, and trespassers who may be accessing the site and disturbing soils at the main engine room. PON is currently mitigating the risk posed by the existing contamination by requiring visitors to follow a set of health and safety protocols, including the need to wear protective gear. Additionally, the contamination will be contained as part of the proposed stage 3 restoration works, mitigating the risks to receptors. Although, if contamination were to remain beneath the concrete slab and to manage land appropriately and achieve positive environmental outcomes, additional management would be required to mitigate potential risks to these receptors.

Nation Partners recommends that the land manager (PON) prepares a long-term Environmental Management Plan (EMP) for the site to ensure the ongoing protection of receptors. The EMP should be prepared in accordance with NSW EPA (2020) and shall, as a minimum, include controls to be implemented during any future maintenance activities on the site, including excavations.

8 Conclusions and Recommendations

8.1 Conclusions

The available information for the site and its history, site observations, and the results from data collection activities undertaken for this DSI, Nation Partners presents the following conclusions with respect to the assessment of contamination at the site:

- Fill material surrounding the CHEH in the investigation area was shown to have no exceedances of both health and ecological investigation criteria.
- Soil material within the main engine room as shown to be contaminated by lead, with concentrations exceeding health investigation levels. Further exceedances of total recoverable hydrocarbons and benzo(a)pyrene were observed when compared with ecological screening levels.
- Groundwater at the site historically did not record concentrations of contaminants that would indicate linkage to the contamination present at the site. Exceedances noted in previous investigations (GHD, 2017) were considered a result of historical commercial and industrial land use in the area.
- No potential asbestos containing material was observed within the investigation area, nor was
 asbestos reported in soil samples submitted for analysis, but past assessments noted that asbestos
 was still present within the floor grates and sub-floor cavity floor surface of the main engine room of
 the building. Therefore, the investigation cannot disregard the potential for asbestos to be present.
- The nature and extent of contamination at the site corresponds to the depth and extent of fill material present at the site. The data available is limited and not sufficient to assess the vertical extent of contamination at the site. Still, based on the desktop review it appears that vertical contamination is potentially limited to the depth of fill material present at the site.
- Based on the results of the DSI, the revised conceptual site model (CSM) for the site indicates viable source-pathway-receptor (SPR) linkages for current and future site workers, visitors, and trespassers who may be accessing the site and disturbing soils at the main engine room. PON is currently mitigating the risk posed by the existing contamination by requiring visitors to follow a set of health and safety protocols. Additionally, the contamination will be contained as part of the proposed stage 3 restoration works, mitigating the risks to receptors. On this basis the potential risks to human health and ecological receptors, and to PON as the land manager of the sit, are considered low.

Recommendations

Based on the conclusions presented above, Nation Partners provides the following recommendations to EJE for the management of contamination at the site:

- If contamination remains beneath the proposed encapsulation concrete slab in the main engine room, the land manager should prepare a long-term Environmental Management Plan (EMP) to ensure the ongoing protection of receptors. The EMP should be prepared in accordance with NSW EPA (2020) and shall, as a minimum, include controls to be implemented during any future maintenance activities on the site, including excavations; and
- If soils within the main engine room were to be removed, these should be managed following the NSW EPA waste classification guidelines and disposed to an approved licensed facility.

9 Limitations

The sole purpose of this document is to present the Detailed Site Investigation (DSI) for the target investigation area as defined in this DSI. This DSI has been prepared by Nation Partners for the sole use of EJE Architecture (the 'Client') and in accordance with the scope of services developed and agreed between Nation Partners and the Client.

All detail and conclusions that deal with sub-surface conditions are based on interpretation and judgement of site conditions at the time site investigations were designed and conducted, and as a result the description of site conditions have inherent uncertainty attached to them. Conditions at the site may have changed due to natural forces and/or operations on or near the site.

Any decisions based on the findings of the DSI must consider any subsequent changes in site conditions and/or developments in legislative and regulatory requirements. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of a change in the site conditions and/or regulatory/legislative framework since the date of the DSI.

This DSI should only be presented in full and should not be used to support any objective other than those detailed in the DSI. In particular, the DSI does not contain sufficient information to enable it to be used for any use other than the project specific requirements for which the DSI was carried out. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of changes to the usage, size, design, layout, location or any other material change to the intended purpose contemplated under this Agreement.

The DSI is based on an interpretation of factual information available and the professional opinion and judgement of Nation Partners. Unless stated to the contrary, Nation Partners has not verified the accuracy or completeness of any information received from the Client or a third party for the purposes of preparing the DSI. Nation Partners accepts no liability to the Client for any loss and/or damage incurred as a result of any inaccurate or incomplete information. Any reliance on this DSI by a third party shall be entirely at such party's own risk. Nation Partners provides no warranty or guarantee to any third party, express or implied, as to the information and/or professional advice indicated in the DSI and accepts no liability for or in respect of any use or reliance upon the DSI by a third party.

References

ASET (2021). *Asbestos Identification Report.* Prepared by Australian Safer Environment and Technology Pty Ltd, dated October 2021.

GHD (2015) Baseline Contamination Assessment Vacant and Operational Lands – Stage 1 Summary Report. Prepared by GHD Pty Ltd for Port of Newcastle, dated August 2015.

GHD (2017) Baseline Contamination Assessment Vacant and Operational Lands – Stage 2 Summary Report. Prepared by GHD Pty Ltd for Port of Newcastle, dated April 2017.

NEPC (2013) *National Environment Protection (Assessment of Site Contamination) Measure 1999.* National Environment Protection Council (NEPC), amended May 2013.

NSW EPA (1995) Sampling design guidelines

NSW EPA (2014b) Addendum to the Waste Classification Guidelines

NSW EPA (2015) Guidelines on the duty to report contamination under the Contaminated Land Management Act 1997

NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme, 3rd edition

NSW EPA (2020) Consultants reporting on contaminated land: Contaminated land guidelines.

US EPA (2006) Guidance on Systematic Planning Using the Data Quality Objectives Process

PON (2022) Port of Newcastle Pty Ltd Asbestos Database. Prepared by Port of Newcastle, dated 2022.

RCA (2022) Geotechnical Investigation Carrington Hydraulic Engine House 106 Bourke Street, Carrington, dated February 2022.

Verico AIS (2022) Carrington Hydraulic Engine House Brick Mortar Asbestos Sampling. Prepared by Verico Asset Integrity Services, dated January 2021.

Verico AIS (2022) Carrington Hydraulic Engine House Sub-floor Remediation Assessment. Prepared by Verico Asset Integrity Services, dated June 2022.

SOLUTIONS FOR COMPLEX PROJECTS

Figures

Figure 1: Site Location Carrington Hydraulic Engine House 106 Bourke Street, Carrington COPVRIGHT The construction

The concepts and information contained in this document are property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the witten permission of Nation Partners Pty Ltd constitutes an infringement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided here in.

Legend

COPYRIGHT

The concepts and information contained in this document are property of Nation Partners Pty Ltd. Use or copying of this document in whole or in part without the witten permission of Nation Partners Pty Ltd constitutes an infringement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided here in.

Plaza Area

_

External Investigation Area

Soil Bore Locations

•

GHD 2017 Sampling Locations

partners

of this document in whole or in part without the witten permission of Nation Partners Pty Ltd constitutes an infringement of copyright. Nation Partners Pty Ltd does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided here in.

SOLUTIONS FOR COMPLEX PROJECTS

Tables

	Moisture Content										PAH/Phe	nols (SIM)					
	. Moisture Content	, Acenaphthene	, Acenaphthylene	Anthracene	, Benzo(a)anthracene	, Benzo(a) pyrene	Benzo(b+j)fluoranth t ene	, Benzo(g,h,i)perylene	Benzo(k)fluoranthen e	, Chrysene	Dibenz(a,h)anthrace ne	Fluoranthene	Fluorene	lndeno(1,2,3- : c,d)pyrene	, Naphthalene	Phe nanthrene	Pyrene
50	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Fine Soil																	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																	
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind															370		
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil						1.4											
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																	

Field ID	Date	Matrix Type	Sample Type																	
SB01_0.0	24/8/22	Soil	Normal	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SB02_0.0	24/8/22	Soil	Normal	2.2	2.0	1.5	10.9	28.0	18.0	27.4	6.6	8.9	27.3	2.2	54.3	2.0	6.2	1.4	29.8	57.9
SB03_0.0-0.2	24/8/22	Soil	Normal	14.2	<0.5	<0.5	<0.5	0.6	<0.5	0.6	<0.5	<0.5	0.5	<0.5	1.2	<0.5	<0.5	<0.5	0.9	1.0
SB04_0.0-0.2	24/8/22	Soil	Normal	10.0	<0.5	<0.5	<0.5	0.6	<0.5	0.7	<0.5	<0.5	0.6	<0.5	1.3	<0.5	<0.5	<0.5	0.9	1.3
SB04_0.4-0.6	24/8/22	Soil	Normal	13.2	<0.5	<0.5	0.6	1.5	1.2	1.9	<0.5	0.6	1.8	<0.5	3.4	<0.5	<0.5	<0.5	2.7	3.4
SB05_0.0-0.2	24/8/22	Soil	Normal	14.2	<0.5	<0.5	<0.5	0.8	<0.5	0.6	<0.5	<0.5	0.8	<0.5	1.6	<0.5	<0.5	<0.5	1.7	1.4
SB06_0.0-0.2	24/8/22	Soil	Normal	18.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SB06_0.4-0.6	24/8/22	Soil	Normal	17.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SB07_0.0-0.2	24/8/22	Soil	Normal	10.2	<0.5	<0.5	<0.5	0.6	<0.5	0.7	<0.5	<0.5	0.6	<0.5	1.4	<0.5	<0.5	<0.5	0.9	1.3
SB08_0.0-0.2	24/8/22	Soil	Normal	9.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

																Pes	sticides by GCI
	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Sum of total)	4,4-DDE	а-внс	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	Chlordane (cis)	Chlordane (trans)	d-BHC	DDD	рот	DDT+DDE+DDD	Dieldrin
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.05
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Fine Soil																	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																	
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind															640		
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil																	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil	40	40	40	4,000				50		560						4000	

Field ID	Date	Matrix Type	Sample Type																	
SB01_0.0	24/8/22	Soil	Normal	0.6	1.2	<0.5	<0.5	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	< 0.05
SB02_0.0	24/8/22	Soil	Normal	27.6	27.6	27.6	284	<0.25	<0.25	<0.25	0.74	<0.25	<0.08	<0.25	<0.25	<0.25	<0.25	<0.2	<0.08	0.74
SB03_0.0-0.2	24/8/22	Soil	Normal	0.7	1.2	<0.5	4.8	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.2	< 0.05	< 0.05
SB04_0.0-0.2	24/8/22	Soil	Normal	0.7	1.2	<0.5	5.4	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	< 0.05
SB04_0.4-0.6	24/8/22	Soil	Normal	1.9	2.2	1.6	17.1	<0.05	<0.05	<0.05	0.31	<0.05	0.54	0.24	0.30	< 0.05	<0.05	<0.2	< 0.05	0.31
SB05_0.0-0.2	24/8/22	Soil	Normal	0.7	1.2	<0.5	6.9	0.27	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	0.27	< 0.05
SB06_0.0-0.2	24/8/22	Soil	Normal	0.6	1.2	<0.5	<0.5	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	< 0.05
SB06_0.4-0.6	24/8/22	Soil	Normal	0.6	1.2	<0.5	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	<0.05
SB07_0.0-0.2	24/8/22	Soil	Normal	0.7	1.2	<0.5	5.5	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	< 0.05
SB08_0.0-0.2	24/8/22	Soil	Normal	0.6	1.2	<0.5	<0.5	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.2	< 0.05	< 0.05

	иs												Polychlorinated Biphenyls (PCB)	Total Mercury by FIMS		
	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	He ptachlor e poxide	Hexachlorobenzene	Methoxychlor	PCBs (Sum of total)	Mercury	Arsenic	Cadmium
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.1	0.1	5	1
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Fine Soil																
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind															160	
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil																
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil	2,000				100				50		85	2700	8	730	4,000	800

Field ID	Date	Matrix Type	Sample Type																
SB01_0.0	24/8/22	Soil	Normal	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.2	<0.1	2.8	13	2
SB02_0.0	24/8/22	Soil	Normal	<0.15	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.2	<0.2	1.0	59	15
SB03_0.0-0.2	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.1	0.2	11	4
SB04_0.0-0.2	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	0.2	12	<1
SB04_0.4-0.6	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	0.4	25	<1
SB05_0.0-0.2	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	0.3	9	2
SB06_0.0-0.2	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	<0.1	<5	<1
SB06_0.4-0.6	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	<0.1	<5	1
SB07_0.0-0.2	24/8/22	Soil	Normal	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<0.1	<0.1	8	2
SB08_0.0-0.2	24/8/22	Soil	Normal	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.1	<0.1	6	<1

	Tota	l Metals by ICP	P-AES						TRH - S	emivolatile Fr	action						
	Chromium (III+VI)	Copper	Lead	Nickel	Zinc	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	Naphthalene (V OC)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	2	5	5	2	5	50	50	100	100	50	50	100	100	50	1	10	10
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Fine Soil						1,000		5,000	10,000							800	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																	260 370 630
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind															370		
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil						170	170	2,500	6,600								215
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil		250,000	1,500	4,000	400,000												

Field ID	Date	Matrix Type	Sample Type																	
SB01_0.0	24/8/22	Soil	Normal	12	340	3,880	12	1,600	<50	<50	3,340	1,400	4,740	<50	1,430	2,440	3,870	<1	<10	<10
SB02_0.0	24/8/22	Soil	Normal	56	1,590	11,600	43	2,570	180	180	3,290	1,500	4,970	90	2,110	1,930	4,130	<1	<10	<10
SB03_0.0-0.2	24/8/22	Soil	Normal	11	314	733	14	1,090	<50	<50	340	<100	340	<50	260	140	400	<1	<10	<10
SB04_0.0-0.2	24/8/22	Soil	Normal	7	81	180	15	278	<50	<50	440	250	690	<50	280	270	550	<1	<10	<10
SB04_0.4-0.6	24/8/22	Soil	Normal	8	117	495	16	385	110	110	1,130	370	1,610	50	790	570	1,410	<1	<10	<10
SB05_0.0-0.2	24/8/22	Soil	Normal	7	152	326	9	515	130	130	1,000	210	1,340	60	770	380	1,210	<1	<10	<10
SB06_0.0-0.2	24/8/22	Soil	Normal	4	356	250	4	276	<50	<50	130	<100	130	<50	<100	<100	<50	<1	<10	<10
SB06_0.4-0.6	24/8/22	Soil	Normal	3	87	171	3	379	<50	<50	120	<100	120	<50	<100	<100	<50	<1	<10	<10
SB07_0.0-0.2	24/8/22	Soil	Normal	8	102	192	6	437	<50	<50	190	<100	190	<50	120	110	230	<1	<10	<10
SB08_0.0-0.2	24/8/22	Soil	Normal	6	173	125	6	259	<50	<50	160	<100	160	<50	<100	<100	<50	<1	<10	<10

		TRF	I Volatiles/BTI	EX				
	C6-C9 Fraction	Benzene	Toluene	Ethylbenzene	, Xylene (m & p)	, Xylene (o)	, Xylene Total	Total BTEX
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	10	0.2	0.5	0.5	0.5	0.5	0.5	0.2
NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Fine Soil								
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand		3 3 3 3					230	
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind								
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil		95	135	185			95	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil								

Field ID	Date	Matrix Type	Sample Type								
SB01_0.0	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB02_0.0	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB03_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB04_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB04_0.4-0.6	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB05_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB06_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB06_0.4-0.6	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB07_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
SB08_0.0-0.2	24/8/22	Soil	Normal	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2

	atic		l	Mass	Particulates			Asbesto	<u> </u>]
P	artr	hers	6	weight of sample	Organic	Asbestos (Trace)	Synthetic Mineral Fibre	Asbestos Type	Asbestos fibres	APPROVE D IDENTIFIE R:
	Date Matrix Type Sample Ty			g	g/kg	Fibres	g/kg	Detect	g/kg	-
EQL		Matrix Type Sample Typ 2 Soil Normal 2 Soil Normal 2 Soil Normal 2 Soil Normal 2 Soil Normal 2 Soil Normal		0.01	0.1	5	0.1			
Field ID	Date	Matrix Type	Sample Type							
SB01_0.0	24/8/22	Matrix Type Sample Ty Soil Normal Soil Normal Soil Normal Soil Normal Soil Normal Soil Normal		37.3	No	No	No		No	Brendan Schrader
SB02_0.0	24/8/22	Soil	Normal	45.2	No	No	No		No	Brendan Schrader
SB03_0.0-0.2	24/8/22	Soil	Normal	44.2	No	No	No		No	Brendan Schrader
SB04_0.0-0.2	24/8/22	Soil	Normal	33.3	No	No	No		No	Brendan Schrader
SB04_0.4-0.6	24/8/22	Soil	Normal	55.6	No	No	No		No	Brendan Schrader
SB05_0.0-0.2	24/8/22	Soil	Normal	46.0	No	No	No		No	Brendan Schrader
SB06_0.0-0.2	24/8/22	Soil	Normal	28.6	No	No	No		No	Brendan Schrader
SB06_0.4-0.6	24/8/22	Soil	Normal	36.3	No	No	No		No	Brendan Schrader
SB07_0.0-0.2	24/8/22	SoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormalSoilNormal		48.1	No	No	No		No	Brendan Schrader
SB08_0.0-0.2	24/8/22	Soil	Normal	30.1	No	No	No		No	Brendan Schrader

•				BT	EX							TRH				Halogenated Benzenes	Inorg	anics
	Naphthale ne (VOC)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	Hexachlorobenzene	Moisture Content	Moisture Content (dried @ 103°C)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%
	0.5	0.1	0.1	0.1	0.2	0.1	0.3	0.2	10	10	50	50	100	100	50	0.05	1	1

Lab Report Number Field ID Matrix Type Date

EQL

-																					
ES2230446	SB03_0.0-0.2	Soil	24/8/22	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<10	<10	<50	<50	340	<100	340	< 0.05	14.2	
ES2230446	QAQC01	Soil	24/8/22	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<10	<10	<50	<50	320	<100	320	<0.05	19.6	
RPD				0	0	0	0	0	0	0	0	0	0	0	0	6	0	6	0	32	
ES2230446	SB03_0.0-0.2	Soil	24/8/22	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<10	<10	<50	<50	340	<100	340	<0.05	14.2	
918696	QAQC2	Soil	24/8/22	<0.5	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3		<20	<20	90	90	630	160	880	<0.5		16
RPD				0	0	0	0	0	0	0		0	0	57	57	60	46	89	0		

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

			Me	tals														
Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	4,4-DDE	а-внс	Aldrin	Aldrin + Dieldrin	b-BHC	Chlordane	Chlordane (cis)	Chlordane (trans)	d-BHC
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	0.4	2	5	5	0.1	2	5	0.1	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05

Lab Report Number Field ID Matrix Type Date

EQL

ES2230446	SB03_0.0-0.2	Soil	24/8/22	11	4	11	314	733	0.2	14	1,090			<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05
ES2230446	QAQC01	Soil	24/8/22	12	4	11	252	695	0.2	12	1,020			<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
RPD				9	0	0	22	5	0	15	7			0	0	0	0	0	0	0	0	0
ES2230446	SB03_0.0-0.2	Soil	24/8/22	11	4	11	314	733	0.2	14	1,090			<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
918696	QAQC2	Soil	24/8/22	11	4.6	13	260	650	0.2	12	970	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1			<0.5
RPD				0	14	17	19	12	0	15	12			0	0	0	0	0	0			0

*RPDs have only been considered where a concentration is greater

**Elevated RPDs are highlighted as per QAQC Profile settings (Acce

DDD DDT Endosulfan I Heptachlor Ace naphthylene Ace naphthylene		Organ	ochlorine Pes	ticides															
		DDT	DDT+DDE+DDD	Dieldrin	Endosulfan	Endosulfan I	ndosulfan I	ndosulfan sulphat	Endrin	Endrin aldehyde	Endrin ketone	-BHC (Lindane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene	Acenaphthene	Ace naphthyle ne	Anthracene
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5	0.5	0.5	0.5

Lab Report Number Field ID Matrix Type Date

EQL

ES2230446	SB03_0.0-0.2	Soil	24/8/22	<0.05	<0.2	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.2		<0.5	<0.5	<0.5
ES2230446	QAQC01	Soil	24/8/22	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2		<0.5	<0.5	<0.5
RPD				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
ES2230446	SB03_0.0-0.2	Soil	24/8/22	<0.05	<0.2	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.2		<0.5	<0.5	<0.5
918696	QAQC2	Soil	24/8/22	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5
RPD				0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0

*RPDs have only been considered where a concentration is greater

**Elevated RPDs are highlighted as per QAQC Profile settings (Acce

					РАН												PC	Bs
Benzo (a) anthracene	Benzo(a) pyrene	Benzo(b+j)fluoranth ene	Benzo(g,h,i)perylene	Benzo(k)fluoranthen e	Chrysene	Dibenz(a,h)anthrace ne	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Naphthale ne	Phenanthrene	Pyrene	PAHs (Sum of total)	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.1

Lab Report Number Field ID Matrix Type Date

EQL

		,,																				
ES2230446	SB03_0.0-0.2	Soil	24/8/22	0.6	<0.5	0.6	<0.5	<0.5	0.5	<0.5	1.2	<0.5	<0.5	<0.5	0.9	1.0	4.8					
ES2230446	QAQC01	Soil	24/8/22	0.6	<0.5	0.7	<0.5	<0.5	0.6	<0.5	1.6	<0.5	<0.5	<0.5	0.8	1.6	5.9					
RPD				0	0	15	0	0	18	0	29	0	0	0	12	46	21					
ES2230446	SB03_0.0-0.2	Soil	24/8/22	0.6	<0.5	0.6	<0.5	<0.5	0.5	<0.5	1.2	<0.5	<0.5	<0.5	0.9	1.0	4.8					
918696	QAQC2	Soil	24/8/22	1.1	0.6	0.7	<0.5	0.7	1.2	<0.5	1.4	<0.5	<0.5	<0.5	1.3	1.2	8.2	<1	<1	<1	<1	<1
RPD				59	18	15	0	33	82	0	15	0	0	0	36	18	52					

*RPDs have only been considered where a concentration is greater

**Elevated RPDs are highlighted as per QAQC Profile settings (Acce

					ТРН					Asbestos		
Arochlor 1254	, Arochlor 1260	PCBs (Sum of total)	, C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	: Weight of Samples	: Organic Fibre	Asbestos Trace	Synthetic Mineral Fibre	Asbestos Fibres
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g/kg	g/kg	g/kg	g/kg	g/kg
0.1	0.1	0.1	10	20	50	50	50	0.01	0.1	5	0.1	0.1

Lab Report Number Field ID Matrix Type Date

EQL

			2410													
ES2230446	SB03_0.0-0.2	Soil	24/8/22			<0.1	<10	<50	260	140	400	44.2	NO	NO	NO	NO
ES2230446	QAQC01	Soil	24/8/22			<0.1	<10	<50	220	150	370	54	NO	NO	NO	NO
RPD						0	0	0	17	7	8					
ES2230446	SB03_0.0-0.2	Soil	24/8/22			<0.1	<10	<50	260	140	400					
918696	QAQC2	Soil	24/8/22	<1	<1	<1	<20	59	460	270	789					1
RPD						0	0	17	56	63	65					1

*RPDs have only been considered where a concentration is greater

**Elevated RPDs are highlighted as per QAQC Profile settings (Acce

						-	-		-	РАН/Р	henols (GC/M	S - SIM)	-		-			
			전 전 고	전 전 고	전 지 hthracene	전 전 고	면 Benzo(a) pyrene	Benzo(b+j)fluoranth P/a ene	면 Benzo(g,h,i)perylene	因为 Benzo(k)fluoranthen 了	Chrysene M ^B /T	五 Dibenz(a,h)anthrace 了,ne	Fluoranthene	Hall Hall	版 Indeno(1,2,3- C,d)pyrene	전 지 지 aphthalene	」 上 し し 日 日 に し に し に し に し に し に し に し に し に し に し し し し し し し し し し し し し	- Dyrene M8/Γ
EQL			1	1	1	1 1	0.5	0.001	1 1	1	1	1	1	1	1	1	1	1
Field ID	Matrix Type	Date								<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
		0.10/00							1.0								1.0	
RIN_01	Water	24/8/22	<1.0	<1.0	<1.0	<1.0	<0.5	<0.0010	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

							TR	H Volatiles/B	EX				
			Naphthal ene (VOC)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	C6-C9 Fraction	Benzene	Toluene	Ethylbenz ene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL			1	10	10	10	0.2	0.5	0.5	0.5	0.5	0.5	0.2
Field ID	Matrix Type	Date											
Trip Blank	Soil	24/8/22	<1	<10	<10	<10	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2

				-		-	-	-	-	-	-	-		-	-	Pesticides	s by GCMS	
			Acenaphthene	PAHs (Sum of total)	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	Chlordane (cis)	Chlordane (trans)	d-BHC	QQQ	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan I
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL			1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5
Field ID	Matrix Type	Date				-	-	-	-	-		-	-	-	-	-		
																		
RIN_01	Water	24/8/22	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5

			Naphthal ene (V OC) Bay/8
EQL			1
Field ID	Matrix Type	Date	
Trip Blank	Soil	24/8/22	<1

					-		-	-	-	-	-	-		Polychlorinated Biphenyls (PCB)	Total Mercury by FIMS			Total Me
			Acenaphthene	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	He ptachlor e poxide	Hexachlorobenzene	Methoxychlor	PCBs (Sum of total)	Mercury	Arsenic	Cadmium	Chromium (III+VI)
			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L	mg/L
EQL			1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	1	0.0001	0.001	0.0001	0.001
Field ID	Matrix Type	Date													1			
																0	0	67
RIN_01	Water	24/8/22	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<1	<0.0001	<0.001	<0.0001	<0.001
															0			

FQL			Maphthal Naphthal ene (VOC) mg/kg
Field ID	Matrix Type	Date	
Trip Blank	Soil	24/8/22	<1

				tals by ICP-MS	- Suite A			TRH - Semivolatile Fraction										
			Acenaphthene	Copper	Lead	Nickel	Zinc	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	Naphthalene (VOC)	C6-C10 Fraction (F1)
			μg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L
EQL			1	0.001	0.001	0.001	0.005	100	100	100	100	100	50	100	50	50	0.005	20
Field ID	Matrix Type	Date																
				0	0	0	0											
RIN_01	Water	24/8/22	<1.0	< 0.001	<0.001	<0.001	<0.005	<100	<100	<100	<100	<100	<50	<100	<50	<50	<0.005	<20

[EQL			Maphthal ene (VOC) mg/kg
Field ID	Matrix Type	Date	<u> </u>
Trip Blank	Soil	24/8/22	<1

				TRH Volatiles/BTEX									
			Дан Асепарhthene	路 66-C10 (F1 minus 7 BTEX)	T مار C6-C9 Fraction	e Beuz Beuz Beuz Beuz	e Tolue μg/L	T/ ^{ät} T	کراهه (m & p) ۲	Xylene (o) ۳۵	کر Xylene Total	지역 Total BTEX	
EQL			1	20	20	1	2	2	2	2	2	1	
Field ID	Matrix Type	Date			1	1	1		1	1	1		
DIN 01	14/at a r	24/0/22		- 20	20								
RIN_01	Water	24/8/22	<1.0	<20	<20	<1	<2	<2	<2	<2	<2	<1	

			Maphthal Bay/Bu
EQL			1
Field ID	Matrix Type	Date	
Trip Blank	Soil	24/8/22	<1

SOLUTIONS FOR COMPLEX PROJECTS

Appendix A – Photo Appendix

EJE Architecture Carrington Hydraulic Engine House – Detailed Site Investigation

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

Photo 3: Surface soil material from SB02 – 24 August 2022

SOLUTIONS FOR COMPLEX PROJECTS

Photo 4: Example of sub-floor space within CHER – 24 August 2022

SOLUTIONS FOR COMPLEX PROJECTS

Photo 5: CHER floor surface with oily material deposited on surface – 24 August 2022

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

Photo 8: Fill material from SB05 – 24 August 2022

nation partners

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

SOLUTIONS FOR COMPLEX PROJECTS

Appendix B – Bore Logs

Boring Log						
natior		Project Name: Ca	rrington	Hydraulic Engine House	Client: EJE Architecture	Boring No:
partne	215				-	SB01
		Project No: NP22013	Date di	rilled: 24/8/2022		Drill Rig Type:
Site Addre	ss: 106	Bourke Street,	Groundwater Depth:		Drilling Contractor:	Diameter:
Carrington			Elevati	ion:		Hammer Type:
Logged By			Total D	Depth:	Bit Type:	Drill Crew:
Nelson Phi	llips					
-	Type				Lithology	
Depth (m)	Ъ Т		G			Contaminant
eptł	Sample	Sample ID	F		<u>me:</u> modifier, color, moisture, cy, grain size, other descriptors	Indicators
Ō	Sar			density/consisten	cy, grain size, other descriptors	
0	S, A	SB01_0.0		Brown,	silty clay, extremely stiff	Rat faeces, surface
						discolouration - likely oil,
						white chalky flecks
			1			
			 			
Notes: Soil	had so	l Jidified over time lik	elv due	to engine discharge depos	sited on surface	
		aped from the surfa			site on sundee.	
-		r PID reading				
<u>S = Soil Sa</u>	•					
<u>A = Asbest</u>	os sam	<u>elqr</u>				
action						
natior		Boring Log				
partne	215					
		Project Name: Ca	rrington	Hydraulic Engine Room	Client: EJE Architecture	Boring No:
		r roject Name. Oa	inington			SB02
		Project No:	Date d	rilled: 24/8/2022	1	Drill Rig Type:
Cite Aslala	400	NP22013	0	hunden Deutha	Deilling Contractory	Discussion
Carrington	ss: 106	Bourke Street,	Groundwater Depth:		Drilling Contractor:	Diameter:
			Elevati			Hammer Type:
Logged By			Total D	I Depth: Bit Type:		Drill Crew:
Nelson Phi	-	1		T		
Ê	Type				Lithology	
u) 4	e L	Sample ID	GI	Sail Craum Na	mer medifier seler meisture	Contaminant
Depth (m)	Sample	Sample ID	F		<u>me:</u> modifier, color, moisture, cy, grain size, other descriptors	Indicators
Δ	Sar			density/consisten	cy, grain size, other descriptors	
0	S, A	SB02_0.0	1	Silty cla	ay, brown, extremely stiff	Rat faeces, surface
						discolouration - likely oil,
			ļ			white chalky flecks
			1			
			ļ			
			+			
			 			
				to engine discharge depo	sited on surface.	
-		aped from the surfa	ice using	<u>a trowel.</u>		
$\frac{\text{Insufficient}}{\text{S} = \text{Soil Sa}}$		r PID reading.				
S = Soli SalA = Asbest		elar				
		<u> </u>				

		Boring Log				
nation partners			rrington	Hydraulic Engine House	Client: EJE Architecture	Boring No: SB03
		Project No: NP22013	Date dr	rilled: 24/8/2022		Drill Rig Type: HA
		6 Bourke Street,	Groundwater Depth:		Drilling Contractor:	Diameter: 150mm
Carrington	1		Elevati	on:		Hammer Type:
Logged By	y:		Total D	epth:	Bit Type:	Drill Crew:
Nelson Ph	illips		0.35m			
Depth (m)	Sample Type	Sample ID	Soil Group Name		Lithology ame: modifier, color, moisture,	Contaminant Indicators
Del	Sam		density/consistency, grain size, other descriptors		indicators	
0			2.1	FILL - Silty sand, black w	ith traces of yellow sand, some gravel, moist	Different types of aggregate, solidified hydrocarbon material - likely coal
					Refusal @ 0.35m	
			~~~~~~			
natio		Device a Leen				
		<u>Boring Log</u> Project Name: Ca	rrington	Hydraulic Engine Room	Client: EJE Architecture	Boring No:
partn		Project Name: Ca Project No:	-	Hydraulic Engine Room	Client: EJE Architecture	Boring No: SB04 Drill Rig Type: HA
Site Addro		Project Name: Ca	Date dr		Client: EJE Architecture Drilling Contractor:	SB04
·		Project Name: Ca Project No: NP22013	Date dr	rilled: 24/8/2022 dwater Depth:	_	SB04 Drill Rig Type: HA
Site Addro Carrington Logged By	ess: 100	Project Name: Ca Project No: NP22013	Date dr	rilled: 24/8/2022 dwater Depth: on:	_	SB04 Drill Rig Type: HA Diameter: 150mm
Site Addro Carrington Logged By	ess: 100	Project Name: Ca Project No: NP22013	Date dr Ground Elevati	rilled: 24/8/2022 dwater Depth: on:	Drilling Contractor:	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type:
Site Addro Carrington Logged By Nelson Ph	ess: 100 y: hillips	Project Name: Ca Project No: NP22013	Date dr Ground Elevati Total D 0.6m	rilled: 24/8/2022 dwater Depth: on:	Drilling Contractor:	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type:
Site Addro Carrington Logged By	ess: 100	Project Name: Ca Project No: NP22013	Date dr Ground Elevati Total D	rilled: 24/8/2022 dwater Depth: on: pepth: <u>Soil Group Na</u> density/consister	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type:
Site Addro Carrington Logged By Nelson Ph	ess: 100 y: hillips	Project Name: Ca Project No: NP22013 6 Bourke Street,	Date dr Ground Elevati Total D 0.6m	rilled: 24/8/2022 dwater Depth: on: pepth: <u>Soil Group Na</u> density/consister	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture,	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant
Site Addre Carrington Logged By Nelson Ph	ess: 100 y: Willips Sample Type	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID	Date dr Ground Elevati Total D 0.6m	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material - likely coal, geofabric
Site Addre Carrington Logged By Nelson Ph	ess: 100 y: iillips S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, solidified hydrocarbon material -
Site Addre Carrington Logged By Nelson Ph	ess: 100 y: iillips S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material - likely coal, geofabric
Site Addre Carrington Logged By Nelson Ph	ess: 100 y: iillips S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material -likely coal, geofabric
Site Addre Carrington Logged By Nelson Ph	ess: 100 y: iillips S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material -likely coal, geofabric
Site Addre Carrington Logged By Nelson Ph	ers: 100 y: millips S, A S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material - likely coal, geofabric
Site Addre Carrington Logged By Nelson Ph	ers: 100 y: iillips S, A S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2 SB04_0.4-0.6	Date dr Ground Elevati Total D 0.6m (udd) OI d 1.6	rilled: 24/8/2022 dwater Depth: on: pepth: Soil Group Na density/consister FILL - Silty sand, black w	Drilling Contractor:  Bit Type:  Lithology ame: modifier, color, moisture, ncy, grain size, other descriptors ith traces of yellow sand, some gravel, moist	SB04 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew: Contaminant Indicators Different types of aggregate, solidified hydrocarbon material - likely coal, geofabric

Option						
partners		<u>Boring Log</u> Project Name: Ca	rrington I	Hydraulic Engine House	Client: EJE Architecture	Boring No: SB05
		Project No: Date drilled: 24/8/2 NP22013		illed: 24/8/2022		Drill Rig Type: HA
		6 Bourke Street,	Groundwater Depth:		Drilling Contractor:	Diameter: 150mm
Carrington			Elevati	on:	1	Hammer Type:
Logged By	/:		Total D	epth:	Bit Type:	Drill Crew:
Nelson Phillips		0.6m				
Depth (m)	Sample Type	Sample ID	PID (ppm)	-	Lithology me: modifier, color, moisture, ncy, grain size, other descriptors	Contaminant Indicators
0.2	S, A	SB05_0.0-0.2	1.6	FILL - Sandy SILT, black w	Different types of aggregate, solidified hydrocarbon material - likely coal	
0.4						
0.6	S, A	SB05_0.4-0.6	1.6	Ge	tting darker with depth	As above
					Refusal @ 0.6m	
Notes: S = Soil sa A = Asbes		nple				
	h	Boring Log				
partn	ר ers		rrington I	Hydraulic Engine Room	Client: EJE Architecture	Boring No: SB06
partn	ר ers	Project Name: Ca Project No:	_	Hydraulic Engine Room	Client: EJE Architecture	_
partn	ers	Project Name: Ca	Date dr		Client: EJE Architecture Drilling Contractor:	SB06
partn		Project Name: Ca Project No: NP22013	Date dr	rilled: 24/8/2022 Iwater Depth:		SB06 Drill Rig Type: HA
Site Addre Carrington	ers ess: 100	Project Name: Ca Project No: NP22013	Date dr Ground Elevati Total D	rilled: 24/8/2022 Iwater Depth: on:		SB06 Drill Rig Type: HA Diameter: 150mm
Site Addre	ers ess: 100 /: illips	Project Name: Ca Project No: NP22013	Date dr Ground Elevati Total D 0.8m	rilled: 24/8/2022 Iwater Depth: on:	Drilling Contractor:  Bit Type: 	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type:
Site Addre Carrington	ers ess: 100	Project Name: Ca Project No: NP22013	Date dr Ground Elevati Total D	rilled: 24/8/2022 Iwater Depth: on: Pepth: <u>Soil Group Na</u>	Drilling Contractor:	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type:
Partn Site Addre Carrington Logged By Nelson Phi	ers ess: 100 /: illips	Project Name: Ca Project No: NP22013 6 Bourke Street,	Date dr Ground Elevati Total D 0.8m	rilled: 24/8/2022 Iwater Depth: on: lepth: <u>Soil Group Na</u> density/consister	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture,	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant
Dartn Site Addre Carrington Logged By Nelson Phi E E E E E O.2 0.4	ers: 100 r: illips S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.8m D J J J U de J J O U U D T O I I C	rilled: 24/8/2022 Iwater Depth: on: lepth: Soil Group Na density/consister FILL - Sandy SILT, black	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture, ncy, grain size, other descriptors with traces of yellow sand and gravel, moist	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, geofabric
Partn Site Addre Carrington Logged By Nelson Phi E E C C C C C C C C C C C C C C C C C	ers: 100 r: illips S, A S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2 SB04_0.4-0.6	Date dr Ground Elevati Total D 0.8m	rilled: 24/8/2022 Iwater Depth: on: Pepth: Soil Group Na density/consister FILL - Sandy SILT, black	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture, ncy, grain size, other descriptors with traces of yellow sand and gravel, moist	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, geofabric As above
<b>Dartn</b> <b>Site Addre</b> Carrington <b>Logged By</b> Nelson Phi <b>E</b> <b>E</b> <b>E</b> <b>E</b> <b>E</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b> <b>C</b>	ers: 100 r: illips S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2	Date dr Ground Elevati Total D 0.8m D J J J U de J J O U U D T O I I C	rilled: 24/8/2022 Iwater Depth: on: Pepth: Soil Group Na density/consister FILL - Sandy SILT, black	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture, ncy, grain size, other descriptors with traces of yellow sand and gravel, moist Same fill material as above white, sandstone pieces, moist	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, geofabric
Partn Site Addre Carrington Logged By Nelson Phi E E C C C C C C C C C C C C C C C C C	ers: 100 r: illips S, A S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2 SB04_0.4-0.6	Date dr Ground Elevati Total D 0.8m 0.8m 1.6	rilled: 24/8/2022 Iwater Depth: on: Pepth: Soil Group Na density/consister FILL - Sandy SILT, black	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture, ncy, grain size, other descriptors with traces of yellow sand and gravel, moist	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, geofabric As above
Partn Site Addre Carrington Logged By Nelson Phi (E) 4 0.2 0.4 0.6 0.8	ers: 100 ess: 100 r: illips s, A S, A S, A S, A S, A S, A S, A	Project Name: Ca Project No: NP22013 6 Bourke Street, Sample ID SB04_0.0-0.2 SB04_0.4-0.6 SB06_0.7-0.8 Il material to previo	Date dr Ground Elevati Total D 0.8m 0.8m 1.6 1.7 1.6	rilled: 24/8/2022 Iwater Depth: on: Pepth: Soil Group Na density/consister FILL - Sandy SILT, black	Drilling Contractor:  Bit Type:  Lithology me: modifier, color, moisture, ncy, grain size, other descriptors with traces of yellow sand and gravel, moist Same fill material as above white, sandstone pieces, moist Refusal @ 0.8m	SB06 Drill Rig Type: HA Diameter: 150mm Hammer Type: Drill Crew:  Contaminant Indicators Different types of aggregate, geofabric As above

		Boring Log				
natio partn	n Iers	Project Name: Ca	rrington	Hydraulic Engine House	Client: EJE Architecture	Boring No: SB07
		Project No: NP22013	Date drilled: 24/8/2022			Drill Rig Type: HA
		6 Bourke Street,	Ground	dwater Depth:	Drilling Contractor:	Diameter: 150mm
Carrington	l		Elevati	ion:	1	Hammer Type:
L <b>ogged By:</b> Nelson Phillips		Total D 0.6m	Depth:	Bit Type: 	Drill Crew:	
(LL)			(me		Lithology	Contominant
Depth (m)	Sample Type	Sample ID	piD (pr	Soil Group Name:         modifier, color, moisture,           Cal         density/consistency, grain size, other descriptors		Contaminant Indicators
0.2	S, A	SB07_0.0-0.2	1.6	1.6 FILL - Sandy SILT, black with traces of yellow sand, some gravel, moist		Some aggregate, geofabric
0.4 0.6	S, A	SB07_0.4-0.6	1.6	Fill - S	ame fill material as above	As above
					Refusal @ 0.6m	
natio partn		Boring Log Project Name: Ca	rrington	Hydraulic Engine Room	Client: EJE Architecture	Boring No: SB08
'		Project No: NP22013	Date dr	rilled: 24/8/2022		Drill Rig Type: HA
		6 Bourke Street,	Ground	dwater Depth:	Drilling Contractor:	Diameter: 150mm
Carrington			Elevation:			Hammer Type:
Logged By Nelson Ph			Total Depth: 0.5m		Bit Type: 	Drill Crew:
	Type				Lithology	
Depth (m)	Sample T ₎	Sample ID	PID (ppm)	-	me: modifier, color, moisture, acy, grain size, other descriptors	Contaminant Indicators
0.2	S, A	SB04_0.0-0.2	1.6	FILL - Sandy SILT, black	with traces of yellow sand and gravel, moist	Different types of aggregate, solidified hydrocarbon material, likely coal, geofabric
0.4 0.5	S,A	SB04_0.3-0.5	1.6	FILL - S	Same fill material as above	As above
	-,				Refusal @ 0.5m	
<u>Notes: Sa</u> S = Soil si		naterial as SB03. 04	4 & 05. c	onfirmed by PoN represer	ntative	



# Appendix C – Calibration Certificates

EJE Architecture Carrington Hydraulic Engine House – Detailed Site Investigation

# PID Calibration Certificate

Instrument P Serial No. T

PhoCheck Tiger T-118251



Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass			Comments		
Battery	Charge Condition	1					
	Fuses	1					
	Capacity	1					
	Recharge OK?	1					
Switch/keypad	Operation	1					
Display	Intensity	1					
	Operation (segments)	1					
Grill Filter	Condition	1					
	Seal	1					
Pump	Operation	1					
	Filter	~					
	Flow	1					
	Valves, Diaphragm	1	The second				
РСВ	Condition	1					
Connectors	Condition	1		And the second second			
Sensor	PID	✓ · · · · · · · · · · · · · · · · · · ·	10.6 ev	and a second and a s			1
Alarms	Beeper	√	Low	High	TWA	STEL	
	Settings	1	50ppm	100ppm			
Software	Version	✓					
Data logger	Operation	1					y.
ownload	Operation	✓					
Other tests:	the second is a second	the second and a	and the many that				_

# Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp		93ppm Isobutylene	NATA	SY361	92.8ppm

Calibrated by:

Alex Buist

Calibration date: 19/08/2022

Next calibration due:

15/02/2023

### Appendix D - Field QA/QC Assessment

**Table F.0.1** provides an assessment of the field QA/QC protocols and procedures implemented during this investigation.

#### Table F.0.1 : Field QA/QC Assessment

Field Procedure	QA/QC Assessment			
Sampling Team	The site inspection and sampling were undertaken by Nation Partners' qualified contaminated land professionals Nelson Phillips.			
Field Protocols	All fieldwork was conducted in accordance with guidelines and standards endorsed by the NSW EPA. Soil samples were collected as grab samples using disposable nitrile gloves and trowels. Samples were collected directly from the hand auger directly into sample jars. Fresh gloves were used at each sample location. Groundwater samples were not collected All sampling locations were surveyed, and exact locations are shown in <b>Figure 2</b> .			
Equipment Calibration	Equipment calibration certificates were provided with the PID and copies are included in Appendix C – Calibration Certificates.			
Chain of Custody Forms	All samples were logged and transferred to the analytical laboratory using standard CoC documentation. A copy of the CoC is included in <b>Appendix E – Laboratory Certificates.</b>			
Sample Preservation	All samples were submitted to the analytical laboratory in dedicated sample jars/bottles provided by the analytical laboratory. All samples were labelled with the sample ID, date, and sampler's name, and were submitted to the laboratory in eskies under ice.			
Rinsate and Rinsate Blanks	One rinsate sample was collected and submitted to the analytical laboratory for analysis. Laboratory results for the rinsate samples are presented in <b>Table D</b> . Results indicated that not cross contamination occurred.			
Trip Spikes and Trip Blanks	One trip blank with corresponding trip spike was analysed for BTEXN and TRH (Trip blank only), with results provided in <b>Table D</b> . No BTEXN, TRH or PFAS were reported above the LOR in trip blanks indicating that contaminants were not introduced to the samples as a result of cross contamination during transport. Concentrations of trip spikes were within acceptable limits indicating there was no loss of analyte concentrations as a result of site works and sample transport.			
Field Duplicates (Intra- and Inter- Laboratory Duplicates.	Laboratory results for the blind field duplicates are presented in <b>Table F</b> . The QA/QC criteria adopted for this investigation was based on the relative percentage difference (RPD) between the original and duplicate samples are summarised below:   Result between 1 – 10 times LOR: < 81%  Result between 10 and 30 times LOR : < 50%  Result >30 times LOR: < 30%  Soil  A total of one intra-laboratory (blind) duplicates and one inter-laboratory (split) duplicates were analysed from a total of 10 primary samples. The frequency of duplicate samples collected met recommended rates provided in the Australian Standard AS4482.1-2005. The field RPD acceptance criteria were exceeded for four contaminants is not considered to impact the usability of the results and the conclusion of the investigation as results were still below the adopted screening criteria.			

#### Laboratory QA/QC Assessment

 Table F.0.2 provides an assessment of the laboratory QA/QC protocols and procedures implemented during the investigations

#### Table F.0.2 : Laboratory QA/QC Assessment

# nation partners

Protocol	Description				
Sample Analysis	The analytical laboratories used for the investigation were ALS Environmental (Smithfield, NSW) and Eurofins (Lane Cove West, NSW). Both laboratories are NATA accredited for the analysis required				
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. No exceedances occurred.				
Laboratory Duplicates	Laboratory duplicates were analysed a rate greater than the required frequency of 1 in 20 samples, with a minimum of one laboratory duplicate analysed per analytical batch The QA/QC criteria adopted for this investigation was based on the following RPD calculations: <ul> <li>&lt;10 times LOR: No limit</li> <li>Result between 10 and 20 times LOR: 0-50%</li> <li>Result &gt;20 times LOR: 0-20%</li> </ul> <li>Two laboratory duplicate samples exceed the adopted RPD criteria: <ul> <li>SB08_0.2: Lead (22.1%) 20%</li> <li>SB08_0.0: Copper (29.2%)20%</li> </ul> </li> <li>Exceedances for lead and copper are minor (&lt;5%) and not considered to impact the usability of the results and the conclusion of the investigation.</li>				
Laboratory Control Samples	A laboratory control standard (LCS) is a standard reference material used in preparing primary standards. T concentration should be equivalent to a mid-range standard to confirm the primary calibration. The frequer and QC criteria for LCS samples were met in all cases.				
Matrix Spikes / Matrix Spike Duplicates (MS/MSD)         MS/MSDs are field samples to which a predetermined stock solution of known concentration has be The samples are then analysed for recovery of the known addition. Recoveries should be within laboratory control limits of 70% to 130%, and duplicates should have RPDs of less than 50%. MS recoveries did not exceed the criteria in any circumstances.					
Surrogate Spikes         Surrogate spikes provide a means of checking, for every analysis that no gross errors have stage of the procedure leading to significant analyte loss. Recoveries should be within the s control limits of 50 to 150%.           All surrogate recoveries fell within the nominated acceptance criteria.					
Laboratory QA/QC Assessment	e QA/QC indicators either all complied with the required QA/QC acceptance criteria or showed variations at were not considered to significantly affect the quality of the data. For the purposes of this study, the A/QC results are adequate, and the quality of the data is deemed acceptable for use in this investigation.				

## **DQI** Compliance

Table F.0.3 provides and evaluation of the field and laboratory QA/QC outputs against the DQI criteria.

Indicator	Evaluation Criteria	Assessment
Documentation completeness	<ul> <li>DQO process properly described</li> <li>Site description and history and environmental setting adequately known and appropriately described</li> <li>Potential contamination sources are known to a high level of confidence</li> <li>All relevant field and laboratory documentation completed and provided, including site notes, Chain of Custody (COC) documentation and laboratory test certificates</li> </ul>	The DQO process followed in the design of the investigation program is presented in <b>Section 5</b> . The site description, history and environmental setting are summarised in <b>Section 2</b> and potential sources of contamination and contaminants of concern are identified in <b>Section 4</b> . Relevant field and laboratory documentation is found in <b>Appendix B</b> , <b>Appendix C</b> and <b>Appendix D</b> .
Data completeness	Samples are collected from all areas     affected by the potential contamination	Sampling locations and frequencies were based on professional judgement and targeted those areas potentially affected by the identified potential

# nation partners

Indicator	Evaluation Criteria	Assessment
	<ul> <li>sources, and samples are analysed for all potential contaminants of concern</li> <li>Sufficient samples are collected to appropriately represent all areas possibly affected by potential contamination sources</li> </ul>	contamination sources. All samples were analysed for the identified potential contaminants of concern.
Data comparability	<ul> <li>The use of appropriately trained and qualified contaminated site personnel</li> <li>The use of appropriate techniques and documentation for the collection, storage and transportation of environmental samples</li> <li>The use of NATA-accredited analytical laboratories</li> </ul>	Appropriately trained and qualified contaminated site personnel undertook the investigations program. Sampling procedures and techniques were in general accordance with NSW EPA-endorsed guidelines and standards, and the analytical laboratories used are NATA-accredited.
Data representativeness	<ul> <li>Samples are collected from targeted areas potentially affected by contamination sources, and samples are analysed for all potential contaminants of concern</li> <li>Targeted samples are collected to represent areas possibly affected by potential contamination sources</li> <li>The use of appropriate sampling techniques for the collection of representative environmental samples</li> </ul>	Sampling locations and frequencies were based on professional judgement and targeted those areas potentially affected by the identified potential contamination sources. All samples were analysed for the identified potential contaminants of concern. Sampling procedures and techniques were in general accordance with NSW EPA-endorsed guidelines and standards.
Data precision and accuracy	<ul> <li>The use of appropriately trained and qualified contaminated site personnel</li> <li>The collection of blind field duplicate samples</li> <li>Relative percentage differences (RPD's) for blind field duplicates are 70% to 130% in all samples</li> <li>Achievement of laboratory QA/QC criteria</li> <li>Exceedances of the nominated criteria not</li> </ul>	Appropriately trained and qualified contaminated site personnel undertook the investigations program. The majority of field and laboratory QA/QC criteria were achieved, and the exceedances identified were not considered to adversely affect the quality of the data.
	Exceedances of the nominated criteria not considered to adversely impact the quality of the data	

#### **Data Quality Assessment**

Based on the review and assessment of field and laboratory QA/QC protocols and procedures, whilst elements of the QA/QC program did not meet the proposed data quality criteria, Nation Partners considers that these discrepancies do not adversely impact the quality of the data collected or its use for the objectives of this DSI. The data collected is considered of sufficient quality to achieve the objectives of this DSI.



SOLUTIONS FOR COMPLEX PROJECTS

# Appendix E – Laboratory Certificates

EJE Architecture Carrington Hydraulic Engine House – Detailed Site Investigation

ĸ 5 LAB (D OFFICE: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: COC emailed to ALS? Yes 9 mail involce to (will default to PM # no other addresses are listed). Accounts@nationp 24-08-2022 SAMPLER: HP DRDER NUMBER: NP22013_1 CLIENT: Nation Partners 5  $\nabla$  $\infty$ ALS USE PROJECT MANAGER; Laura Martinez ROJECT: NP22013 Ŧ б 4 CI 2020 8080 0.0-0.2 6 ~ C £ adi Reports to (will default to PM il ne other addresses are itsted): artinoz@pationpartners.com.au & nphilips@nationpartners.com.au> CAOCO1 **RIN 02** SB07_0.4-0.6 TS 24-8-22 OAOC02 RIN 01 SB08 0.3-0.5 SB06 0.7-0.8 TB 24-8-22 SB07_0.0-0.2 SB06 0,4-0,6 SB06 0.0-0.2 SB05 0.4-0.6 SB03 0.0-0.2 SB05 0.0-0.2 SB04 0.4-0.6 SB04 0.0-0.2 SB02_0.0 SB01_0.0 SAMPLE (D SAMPLE DETAILS MATRIX: SOLID (8) WATER (M) CHAIN OF ALS Laboratory piesse bick 🕈 DATE / TIME 24/02/2022 24/08/2022 24/08/2022 74/08/2022 2408/2022 24/08/2022 24-08/2022 24-05/2022 24082022 24/06/2022 24/02/2022 74-00/2012 24/08/2022 2405/2022 24/08/2022 2404/012 24/08/2022 24/08/2022 24/06/2022 24/02/2022 ESDAT FORMAT N Phillips SAMPLER MOBILE: RELINQUISHED BY; CONTACT PH: 0410 
 URCENTE // Committee for both
 MC/Curr Rhing/ear Real Rulading (CD-440)
 JNC/CuSE (COSM/Local Real Rulading (CD-440)

 IN COSM/Local Real Rulading (COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 JMC Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 JMC Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 JMC Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 JMC Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 JMC Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)

 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 IN COSM/Local Rulading (CD-440)
 (Standar d TAT ALS O . • . 1 . . . MATRIX TURNAROUND REQUIREMENTS : հ S-98 TRIVE TEXN/PAH/O C/PCB/8 Metais (As, Cd, Cr, Cu, Pb, N, Zn, Hg) DATE/TIME: ANAL YOIS RECUIRED including SUITES (VB: Sivie Codes must be lated to states suite price) V/here Matale are required, specify Total (unkiteted bothe required) or Dissolved (field filtered bothe required) 1 國 9,000 j, . Sent . . . * 1 × EA200G - Asb NECEIVED BY: VS 24/8/22 DATE/TIME 9 1 0001 COC SEQUENCE NUMBER (Circla) 1 2 3 4 5 6 W 04 2218152 . × TEX&TRHC6-C10 ы u al U + 5 ø DATE/TIME: RELINQUISHED BY: ~ ~ 25-12/2/12 17.00 Other contrasts Random Semple Temperature on Receipt FOR LABORATORY USE ONLY (Circle) trivers are present. the set we want H . On Hold Please forward to Eurofin Comments on Skely contaminant levels, displors, or samples requiring specific CIC analysis etc. . 3:2 DATEMIME RECEIVED BY: Additional Information 14 X  $\bigcirc$ Z 184

200

Telephone : + 61-2-8764 8555 5 

Sydney Work Order Reference

**Environmental Division** 

X

72 S S

У 4

Presidente

and the second second second



# **CERTIFICATE OF ANALYSIS**

Work Order	ES2230446	Page	: 1 of 21
Client	: NATION PARTNERS PTY LTD	Laboratory	Environmental Division Sydney
Contact	: Laura Martinez	Contact	: Customer Services ES
Address	:	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: NP22013	Date Samples Received	: 25-Aug-2022 16:23
Order number	: NP22013_1	Date Analysis Commenced	: 26-Aug-2022
C-O-C number	:	Issue Date	01-Sep-2022 15:43
Sampler	: NP		IC-MRA NATA
Site	:		
Quote number	: EN/222		
No. of samples received	: 18		Accreditation No. 825
No. of samples analysed	: 14		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Copper and Lead on sample ES2230446# 013. Confirmed by re-digestion and reanalysis.
- EP068: Positive results have been confirmed by re-extraction and re-analysis.
- EG035: Positive Mercury results ES2230446 #1 and #2 have been confirmed by reanalysis.
- EP080: The trip spike (Not ALS Spike) have been analysed for volatile TPH and BTEXN only .
- EP068: Particular samples required dilution due to matrix interferences. LOR values have been adjusted accordingly.
- EP066 : Particular samples required dilution due to sample matrix . LOR values have been adjusted accordingly.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.

Page	: 3 of 21
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



• EA200: 'No*' - No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.

• EA200: 'No' - No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

# Page : 4 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB01_0.0	SB02_0.0	SB03_0.0-0.2	SB04_0.0-0.2	SB04_0.4-0.6
		Samplii	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-001	ES2230446-002	ES2230446-003	ES2230446-004	ES2230446-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	<1.0	2.2	14.2	10.0	13.2
EA200: AS 4964 - 2004 Identification of	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Sample weight (dry)		0.01	g	37.3	45.2	44.2	33.3	55.6
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
EG005(ED093)T: Total Metals by ICP-	AES							
Arsenic	7440-38-2	5	mg/kg	13	59	11	12	25
Cadmium	7440-43-9	1	mg/kg	2	15	4	<1	<1
Chromium	7440-47-3	2	mg/kg	12	56	11	7	8
Copper	7440-50-8	5	mg/kg	340	1590	314	81	117
Lead	7439-92-1	5	mg/kg	3880	11600	733	180	495
Nickel	7440-02-0	2	mg/kg	12	43	14	15	16
Zinc	7440-66-6	5	mg/kg	1600	2570	1090	278	385
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	2.8	1.0	0.2	0.2	0.4
EP066: Polychlorinated Biphenyls (P0	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.2	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (	OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	< 0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.08	<0.05	<0.05	0.54
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	0.30
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	0.24

# Page : 5 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB01_0.0	SB02_0.0	SB03_0.0-0.2	SB04_0.0-0.2	SB04_0.4-0.6
		Samplii	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-001	ES2230446-002	ES2230446-003	ES2230446-004	ES2230446-005
Compound	er te r tamber			Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticid	es (OC) - Continued							
Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.74	<0.05	<0.05	0.31
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.15	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.25	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	0.74	<0.05	<0.05	0.31
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.08	<0.05	<0.05	<0.05
	0-2							
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	1.4	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	1.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	2.0	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	2.0	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	29.8	0.9	0.9	2.7
Anthracene	120-12-7	0.5	mg/kg	<0.5	10.9	<0.5	<0.5	0.6
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	54.3	1.2	1.3	3.4
Pyrene	129-00-0	0.5	mg/kg	<0.5	57.9	1.0	1.3	3.4
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	28.0	0.6	0.6	1.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	27.3	0.5	0.6	1.8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	27.4	0.6	0.7	1.9
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	8.9	<0.5	<0.5	0.6
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	18.0	<0.5	<0.5	1.2
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6.2	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	2.2	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6.6	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydroca	arbons	0.5	mg/kg	<0.5	284	4.8	5.4	17.1
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	27.6	<0.5	<0.5	1.6
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	27.6	0.7	0.7	1.9
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	27.6	1.2	1.2	2.2

# Page : 6 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB01_0.0	SB02_0.0	SB03_0.0-0.2	SB04_0.0-0.2	SB04_0.4-0.6
		Sampli	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-001	ES2230446-002	ES2230446-003	ES2230446-004	ES2230446-005
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarl	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	90	<50	<50	50
C15 - C28 Fraction		100	mg/kg	1430	2110	260	280	790
C29 - C36 Fraction		100	mg/kg	2440	1930	140	270	570
^ C10 - C36 Fraction (sum)		50	mg/kg	3870	4130	400	550	1410
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	180	<50	<50	110
>C16 - C34 Fraction		100	mg/kg	3340	3290	340	440	1130
>C34 - C40 Fraction		100	mg/kg	1400	1500	<100	250	370
^ >C10 - C40 Fraction (sum)		50	mg/kg	4740	4970	340	690	1610
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	180	<50	<50	110
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	111	100	65.7	70.3	79.6
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	121	95.8	66.9	80.3	93.7
EP068T: Organophosphorus Pesticide								
DEF	78-48-8	0.05	%	106	98.3	102	120	133
EP075(SIM)S: Phenolic Compound Su								
Phenol-d6	13127-88-3	0.5	%	91.6	96.1	87.8	96.9	91.8
2-Chlorophenol-D4	93951-73-6	0.5	%	96.2	100	90.1	102	94.6
2.4.6-Tribromophenol	118-79-6	0.5	%	89.3	86.7	90.9	86.0	88.2

Page	: 7 of 21
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB01_0.0	SB02_0.0	SB03_0.0-0.2	SB04_0.0-0.2	SB04_0.4-0.6
		Sampli	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-001	ES2230446-002	ES2230446-003	ES2230446-004	ES2230446-005
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	92.2	89.8	86.4	85.1	89.9
Anthracene-d10	1719-06-8	0.5	%	101	93.4	95.0	94.5	92.9
4-Terphenyl-d14	1718-51-0	0.5	%	100	111	110	108	97.5
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	100	97.9	98.3	97.3	88.2
Toluene-D8	2037-26-5	0.2	%	106	109	107	106	96.6
4-Bromofluorobenzene	460-00-4	0.2	%	99.6	104	97.7	101	90.1

# Page : 8 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB05_0.0-0.2	SB06_0.0-0.2	SB06_0.4-0.6	SB07_0.0-0.2	SB08_0.0-0.2
,		Samplii	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-006	ES2230446-008	ES2230446-009	ES2230446-011	ES2230446-013
			-	Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	)5-110°C)							
Moisture Content		1.0	%	14.2	18.6	17.6	10.2	9.4
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Sample weight (dry)		0.01	g	46.0	28.6	36.3	48.1	30.1
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
G005(ED093)T: Total Metals by ICP-	AES							
Arsenic	7440-38-2	5	mg/kg	9	<5	<5	8	6
Cadmium	7440-43-9	1	mg/kg	2	<1	1	2	<1
Chromium	7440-47-3	2	mg/kg	7	4	3	8	6
Copper	7440-50-8	5	mg/kg	152	356	87	102	173
Lead	7439-92-1	5	mg/kg	326	250	171	192	125
Nickel	7440-02-0	2	mg/kg	9	4	3	6	6
Zinc	7440-66-6	5	mg/kg	515	276	379	437	259
G035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
P066: Polychlorinated Biphenyls (P	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (	OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

# Page : 9 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB05_0.0-0.2	SB06_0.0-0.2	SB06_0.4-0.6	SB07_0.0-0.2	SB08_0.0-0.2
		Samplii	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-006	ES2230446-008	ES2230446-009	ES2230446-011	ES2230446-013
Compound	CAS Number		C	Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	0.27	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	0.27	<0.05	<0.05	<0.05	<0.05
	0-2							
EP075(SIM)B: Polynuclear Arom	atic Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	1.7	<0.5	<0.5	0.9	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	1.6	<0.5	0.5	1.4	<0.5
Pyrene	129-00-0	0.5	mg/kg	1.4	<0.5	<0.5	1.3	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	0.8	<0.5	<0.5	0.6	<0.5
Chrysene	218-01-9	0.5	mg/kg	0.8	<0.5	<0.5	0.6	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.6	<0.5	<0.5	0.7	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydroc	carbons	0.5	mg/kg	6.9	<0.5	0.5	5.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.7	0.6	0.6	0.7	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2

# Page : 10 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB05_0.0-0.2	SB06_0.0-0.2	SB06_0.4-0.6	SB07_0.0-0.2	SB08_0.0-0.2
		Sampli	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-006	ES2230446-008	ES2230446-009	ES2230446-011	ES2230446-013
			-	Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocart	oons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	60	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	770	<100	<100	120	<100
C29 - C36 Fraction		100	mg/kg	380	<100	<100	110	<100
C10 - C36 Fraction (sum)		50	mg/kg	1210	<50	<50	230	<50
P080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	130	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	1000	130	120	190	160
>C34 - C40 Fraction		100	mg/kg	210	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	1340	130	120	190	160
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	130	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	80.4	80.4	69.4	70.9	83.1
P068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	90.1	81.0	75.4	70.2	95.1
P068T: Organophosphorus Pesticide	e Surrogate							
DEF	78-48-8	0.05	%	112	74.3	65.0	66.4	86.5
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	84.9	99.1	99.0	95.8	89.7
2-Chlorophenol-D4	93951-73-6	0.5	%	88.2	103	91.2	92.4	91.5
2.4.6-Tribromophenol	118-79-6	0.5	%	102	99.2	84.4	91.6	88.3

Page	: 11 of 21
Work Order	ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB05_0.0-0.2	SB06_0.0-0.2	SB06_0.4-0.6	SB07_0.0-0.2	SB08_0.0-0.2
		Sampli	ng date / time	24-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2230446-006	ES2230446-008	ES2230446-009	ES2230446-011	ES2230446-013
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	85.7	84.5	104	91.5	85.6
Anthracene-d10	1719-06-8	0.5	%	84.0	101	98.3	96.7	93.8
4-Terphenyl-d14	1718-51-0	0.5	%	90.0	98.6	97.4	95.2	92.4
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	92.9	103	102	97.0	98.3
Toluene-D8	2037-26-5	0.2	%	95.5	106	108	103	106
4-Bromofluorobenzene	460-00-4	0.2	%	87.5	100	104	99.2	101

# Page : 12 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QAQC01	TB_24-8-22	TS_24-8-22	 
		Sampli	ng date / time	24-Aug-2022 00:00	24-Aug-2022 00:00	24-Aug-2022 00:00	 
Compound	CAS Number	LOR	Unit	ES2230446-017	ES2230446-018	ES2230446-019	 
				Result	Result	Result	 
EA055: Moisture Content (Dried @ 10	)5-110°C)						
Moisture Content		1.0	%	19.6			 
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils	;					
Asbestos Detected	1332-21-4	0.1	g/kg	No			 
Asbestos (Trace)	1332-21-4	5	Fibres	No			 
Asbestos Type	1332-21-4	-		-			 
Sample weight (dry)		0.01	g	54.0			 
APPROVED IDENTIFIER:		-		B.SCHRADER			 
Synthetic Mineral Fibre		0.1	g/kg	No			 
Organic Fibre		0.1	g/kg	No			 
EG005(ED093)T: Total Metals by ICP-	-AES						
Arsenic	7440-38-2	5	mg/kg	12			 
Cadmium	7440-43-9	1	mg/kg	4			 
Chromium	7440-47-3	2	mg/kg	11			 
Copper	7440-50-8	5	mg/kg	252			 
Lead	7439-92-1	5	mg/kg	695			 
Nickel	7440-02-0	2	mg/kg	12			 
Zinc	7440-66-6	5	mg/kg	1020			 
EG035T: Total Recoverable Mercury	by FIMS						
Mercury	7439-97-6	0.1	mg/kg	0.2			 
EP066: Polychlorinated Biphenyls (P	CB)						
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1			 
EP068A: Organochlorine Pesticides	(OC)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05			 
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05			 
beta-BHC	319-85-7	0.05	mg/kg	<0.05			 
gamma-BHC	58-89-9	0.05	mg/kg	<0.05			 
delta-BHC	319-86-8	0.05	mg/kg	<0.05			 
Heptachlor	76-44-8	0.05	mg/kg	<0.05			 
Aldrin	309-00-2	0.05	mg/kg	<0.05			 
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05			 
^ Total Chlordane (sum)		0.05	mg/kg	<0.05			 
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05			 
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05			 
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05			 

# Page : 13 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QAQC01	TB_24-8-22	TS_24-8-22	 
		Sampli	ng date / time	24-Aug-2022 00:00	24-Aug-2022 00:00	24-Aug-2022 00:00	 
Compound	CAS Number	LOR	Unit	ES2230446-017	ES2230446-018	ES2230446-019	 
				Result	Result	Result	 
EP068A: Organochlorine Pesticic	les (OC) - Continued						
Dieldrin	60-57-1	0.05	mg/kg	<0.05			 
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05			 
Endrin	72-20-8	0.05	mg/kg	<0.05			 
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05			 
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05			 
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05			 
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05			 
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05			 
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2			 
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05			 
Methoxychlor	72-43-5	0.2	mg/kg	<0.2			 
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05			 
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05			 
	0-2						
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5			 
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5			 
Acenaphthene	83-32-9	0.5	mg/kg	<0.5			 
Fluorene	86-73-7	0.5	mg/kg	<0.5			 
Phenanthrene	85-01-8	0.5	mg/kg	0.8			 
Anthracene	120-12-7	0.5	mg/kg	<0.5			 
Fluoranthene	206-44-0	0.5	mg/kg	1.6			 
Pyrene	129-00-0	0.5	mg/kg	1.6			 
Benz(a)anthracene	56-55-3	0.5	mg/kg	0.6			 
Chrysene	218-01-9	0.5	mg/kg	0.6			 
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.7			 
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5			 
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5			 
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5			 
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5			 
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			 
^ Sum of polycyclic aromatic hydroca	arbons	0.5	mg/kg	5.9			 
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5			 
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.7			 
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2			 

# Page : 14 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QAQC01	TB_24-8-22	TS_24-8-22	 
		Sampli	ng date / time	24-Aug-2022 00:00	24-Aug-2022 00:00	24-Aug-2022 00:00	 
Compound	CAS Number	LOR	Unit	ES2230446-017	ES2230446-018	ES2230446-019	 
Compound	ono number			Result	Result	Result	 
EP080/071: Total Petroleum Hydrocarl	hons						
C6 - C9 Fraction		10	mg/kg	<10	<10		 
C10 - C14 Fraction		50	mg/kg	<50			 
C15 - C28 Fraction		100	mg/kg	220			 
C29 - C36 Fraction		100	mg/kg	150			 
^ C10 - C36 Fraction (sum)		50	mg/kg	370			 
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10		 
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10		 
(F1)	_						
>C10 - C16 Fraction		50	mg/kg	<50			 
>C16 - C34 Fraction		100	mg/kg	320			 
>C34 - C40 Fraction		100	mg/kg	<100			 
^ >C10 - C40 Fraction (sum)		50	mg/kg	320			 
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50			 
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	 
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	3.5	 
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	2.8	 
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	4.2	 
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	1.8	 
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	12.3	 
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	6.0	 
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	 
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	90.4			 
EP068S: Organochlorine Pesticide Su	irrogate						
Dibromo-DDE	21655-73-2	0.05	%	85.9			 
EP068T: Organophosphorus Pesticide							
DEF	78-48-8	0.05	%	104			 
EP075(SIM)S: Phenolic Compound Su	irrogates						
Phenol-d6	13127-88-3	0.5	%	86.4			 
2-Chlorophenol-D4	93951-73-6	0.5	%	91.8			 
2.4.6-Tribromophenol	118-79-6	0.5	%	95.2			 

Page	: 15 of 21
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QAQC01	TB_24-8-22	TS_24-8-22	 
		Sampli	ng date / time	24-Aug-2022 00:00	24-Aug-2022 00:00	24-Aug-2022 00:00	 
Compound	CAS Number	LOR	Unit	ES2230446-017	ES2230446-018	ES2230446-019	 
				Result	Result	Result	 
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	90.5			 
Anthracene-d10	1719-06-8	0.5	%	97.2			 
4-Terphenyl-d14	1718-51-0	0.5	%	97.0			 
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	98.4	99.8	88.7	 
Toluene-D8	2037-26-5	0.2	%	101	104	96.8	 
4-Bromofluorobenzene	460-00-4	0.2	%	96.1	104	91.9	 

# Page : 16 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	RIN_01	 	 
		Samplii	ng date / time	24-Aug-2022 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2230446-015	 	 
				Result	 	 
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	 
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	 
Chromium	7440-47-3	0.001	mg/L	<0.001	 	 
Copper	7440-50-8	0.001	mg/L	<0.001	 	 
Nickel	7440-02-0	0.001	mg/L	<0.001	 	 
Lead	7439-92-1	0.001	mg/L	<0.001	 	 
Zinc	7440-66-6	0.005	mg/L	<0.005	 	 
EG035T: Total Recoverable Mercury	by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	 
EP066: Polychlorinated Biphenyls (P0	CB)					
^ Total Polychlorinated biphenyls		1	µg/L	<1	 	 
EP068A: Organochlorine Pesticides (	00)					
alpha-BHC	319-84-6	0.5	µg/L	<0.5	 	 
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	 	 
beta-BHC	319-85-7	0.5	μg/L	<0.5	 	 
gamma-BHC	58-89-9	0.5	µg/L	<0.5	 	 
delta-BHC	319-86-8	0.5	µg/L	<0.5	 	 
Heptachlor	76-44-8	0.5	µg/L	<0.5	 	 
Aldrin	309-00-2	0.5	µg/L	<0.5	 	 
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	 	 
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	 	 
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	 	 
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	 	 
Dieldrin	60-57-1	0.5	µg/L	<0.5	 	 
4.4`-DDE	72-55-9	0.5	µg/L	<0.5	 	 
Endrin	72-20-8	0.5	µg/L	<0.5	 	 
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	 	 
4.4`-DDD	72-54-8	0.5	µg/L	<0.5	 	 
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	 	 
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	 	 
4.4`-DDT	50-29-3	2.0	µg/L	<2.0	 	 
Endrin ketone	53494-70-5	0.5	µg/L	<0.5	 	 
Methoxychlor	72-43-5	2.0	µg/L	<2.0	 	 
^ Total Chlordane (sum)		0.5	µg/L	<0.5	 	 

# Page : 17 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	RIN_01						
		Samplii	ng date / time	24-Aug-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2230446-015						
				Result						
EP068A: Organochlorine Pesticides (OC) - Continued										
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.5	µg/L	<0.5						
	0-2		10							
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5						
EP075(SIM)B: Polynuclear Aroma	tic Hvdrocarbons									
Naphthalene	91-20-3	1.0	µg/L	<1.0						
Acenaphthylene	208-96-8	1.0	µg/L	<1.0						
Acenaphthene	83-32-9	1.0	µg/L	<1.0						
Fluorene	86-73-7	1.0	µg/L	<1.0						
Phenanthrene	85-01-8	1.0	µg/L	<1.0						
Anthracene	120-12-7	1.0	µg/L	<1.0						
Fluoranthene	206-44-0	1.0	μg/L	<1.0						
Pyrene	129-00-0	1.0	µg/L	<1.0						
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0						
Chrysene	218-01-9	1.0	μg/L	<1.0						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0						
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0						
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5						
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0						
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0						
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0						
^ Sum of polycyclic aromatic hydroca	arbons	0.5	µg/L	<0.5						
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5						
EP080/071: Total Petroleum Hydro	ocarbons									
C6 - C9 Fraction		20	µg/L	<20						
C10 - C14 Fraction		50	µg/L	<50						
C15 - C28 Fraction		100	µg/L	<100						
C29 - C36 Fraction		50	µg/L	<50						
^ C10 - C36 Fraction (sum)		50	µg/L	<50						
EP080/071: Total Recoverable Hyd	drocarbons - NEP <u>M 201</u>	3 Fractio	าร							
C6 - C10 Fraction	C6_C10	20	µg/L	<20						
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20						
(F1)										
>C10 - C16 Fraction		100	µg/L	<100						
>C16 - C34 Fraction		100	µg/L	<100						
>C34 - C40 Fraction		100	µg/L	<100						

# Page : 18 of 21 Work Order : ES2230446 Client : NATION PARTNERS PTY LTD Project : NP22013



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	RIN_01	 	 
		Sampli	ng date / time	24-Aug-2022 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2230446-015	 	 
				Result	 	 
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns - Continued			
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	 
^ >C10 - C16 Fraction minus Naphthalene	;	100	µg/L	<100	 	 
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	 
Toluene	108-88-3	2	µg/L	<2	 	 
Ethylbenzene	100-41-4	2	µg/L	<2	 	 
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	 
ortho-Xylene	95-47-6	2	µg/L	<2	 	 
^ Total Xylenes		2	µg/L	<2	 	 
^ Sum of BTEX		1	µg/L	<1	 	 
Naphthalene	91-20-3	5	µg/L	<5	 	 
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	1	%	77.6	 	 
EP068S: Organochlorine Pesticide S	urrogate					
Dibromo-DDE	21655-73-2	0.5	%	72.8	 	 
EP068T: Organophosphorus Pesticid	le Surrogate					
DEF	78-48-8	0.5	%	63.9	 	 
EP075(SIM)S: Phenolic Compound S	urrogates					
Phenol-d6	13127-88-3	1.0	%	23.2	 	 
2-Chlorophenol-D4	93951-73-6	1.0	%	48.2	 	 
2.4.6-Tribromophenol	118-79-6	1.0	%	42.5	 	 
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	56.6	 	 
Anthracene-d10	1719-06-8	1.0	%	71.4	 	 
4-Terphenyl-d14	1718-51-0	1.0	%	73.6	 	 
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	113	 	 
Toluene-D8	2037-26-5	2	%	118	 	 
4-Bromofluorobenzene	460-00-4	2	%	110	 	 


# Analytical Results

# **Descriptive Results**

### Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results			
EA200: AS 4964 - 2004 Identification of Asbestos in Soils					
EA200: Description	SB01_0.0 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB02_0.0 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB03_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB04_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB04_0.4-0.6 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB05_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB06_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB06_0.4-0.6 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB07_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	SB08_0.0-0.2 - 24-Aug-2022 00:00	A soil sample.			
EA200: Description	QAQC01 - 24-Aug-2022 00:00	A soil sample.			



# Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate	ono number		
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate	9		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	45	134
EP068S: Organochlorine Pesticide Surrogate			
			-
Dibromo-DDE	21655-73-2	67	111
		67	111
Dibromo-DDE		67 67	111
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate	e	-	
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF	e	-	
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates	78-48-8	67	111
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6	78-48-8 13127-88-3	67	111
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4	78-48-8 13127-88-3 93951-73-6	67 10 14	111 44 94
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol	78-48-8 13127-88-3 93951-73-6	67 10 14	111 44 94
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates	78-48-8 13127-88-3 93951-73-6 118-79-6	67 10 14 17	111 44 94 125
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	78-48-8 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8	67 10 14 17 20	111 44 94 125 104
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10	78-48-8       13127-88-3       93951-73-6       118-79-6       321-60-8       1719-06-8	67 10 14 17 20 27	111 44 94 125 104 113
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14	78-48-8       13127-88-3       93951-73-6       118-79-6       321-60-8       1719-06-8	67 10 14 17 20 27	111 44 94 125 104 113
Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14 EP080S: TPH(V)/BTEX Surrogates	321-60-8 1718-51-0	67 10 14 17 20 27 32	111 44 94 125 104 113 112

Page	: 21 of 21
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates - Continued			

# Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils



# **QUALITY CONTROL REPORT**

Work Order	: ES2230446	Page	: 1 of 14
Client Contact	: NATION PARTNERS PTY LTD : Laura Martinez	Laboratory Contact	: Environmental Division Sydney : Customer Services ES
Address	:	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: ND00040	Telephone	: +61-2-8784 8555
Project Order number	: NP22013 : NP22013_1	Date Samples Received Date Analysis Commenced	: 25-Aug-2022 : 26-Aug-2022
C-O-C number	:	Issue Date	01-Sep-2022
Sampler	: NP		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 18		Accredited for compliance with
No. of samples analysed	: 14		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

# Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW



### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
G005(ED093)T: Tot	al Metals by ICP-AES	(QC Lot: 4544368)							
ES2230276-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	7	9	16.7	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	5	5	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	22	24	8.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	24	20	17.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	94	92	1.8	0% - 50%
ES2230446-003	SB03_0.0-0.2	EG005T: Cadmium	7440-43-9	1	mg/kg	4	6	23.6	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	11	14	24.9	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	14	14	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	11	13	17.4	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	314	347	10.2	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	733	860	16.0	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	1090	1290	16.3	0% - 20%
G005(ED093)T: Tot	al Metals by ICP-AES	(QC Lot: 4544370)							
ES2230446-013	SB08_0.0-0.2	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	6	6	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	6	5	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	173	# 129	29.2	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	125	# 157	22.1	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	259	316	19.8	0% - 20%
A055: Moisture Co	ntent (Dried @ 1 <u>05-11</u>	0°C) (QC Lot: 4544374)							
ES2230278-001	Anonymous	EA055: Moisture Content		0.1	%	58.2	58.5	0.5	0% - 20%

Page	: 3 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL			[			Laboratory	Duplicate (DUP) Report	ł	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA055: Moisture Co	ntent (Dried @ 105-110°	C) (QC Lot: 4544374) - continued							
ES2230446-006	SB05_0.0-0.2	EA055: Moisture Content		0.1	%	14.2	16.4	14.6	0% - 50%
EA055: Moisture Co	ntent (Dried @ 105-110°	C) (QC Lot: 4544375)							
ES2230446-017	QAQC01	EA055: Moisture Content		0.1	%	19.6	15.5	23.4	0% - 50%
EG035T: Total Reco	verable Mercury by FIM	S (QC Lot: 4544369)							
ES2230446-003	SB03_0.0-0.2	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.3	0.0	No Limit
ES2230446-013	SB08_0.0-0.2	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP066: Polychlorina	ted Biphenyls (PCB) (Q	C Lot: 4543030)							
ES2230282-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2230446-008	SB06_0.0-0.2	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochio	orine Pesticides (OC) (C								
ES2230282-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES2230446-008	SB06_0.0-0.2	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page	: 4 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochio	orine Pesticides (OC)	(QC Lot: 4543029) - continued							
ES2230446-008	SB06_0.0-0.2	EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 4543028)							
ES2230282-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	, alony mous	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-89-2	0.0	mgng	-0.0		0.0	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons		010		0.0	0.0	0.0	
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2230446-008	SB06_0.0-0.2	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 5 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyn	uclear Aromatic Hyd	rocarbons (QC Lot: 4543028) - continued							
ES2230446-008	SB06_0.0-0.2	EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4543027)							
ES2230282-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	2540	2880	12.4	0% - 20%
		EP071: C29 - C36 Fraction		100	mg/kg	2250	2570	13.5	0% - 20%
		EP071: C10 - C14 Fraction		50	mg/kg	690	780	12.0	0% - 50%
ES2230446-008	SB06_0.0-0.2	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4543663)							
ES2230185-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2230446-010	SB06_0.7-0.8	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hvdrocarb	oons - NEPM 2013 Fractions (QC Lot: 4543027)							
ES2230282-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	3940	4290	8.4	0% - 20%
	,, <b>,</b>	EP071: >C34 - C40 Fraction		100	mg/kg	1330	1720	25.6	0% - 50%
		EP071: >C10 - C16 Fraction		50	mg/kg	1010	1150	13.4	0% - 20%
ES2230446-008	SB06 0.0-0.2	EP071: >C16 - C34 Fraction		100	mg/kg	130	110	17.2	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4543663)							
ES2230185-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2230446-010	SB06 0.7-0.8	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC			00_010			-10	10	0.0	
	,		71 42 0	0.2	malka	<0.2	<0.2	0.0	No Limit
ES2230185-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	< 0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 6 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013

ES2230398-001

Anonymous

EP080: Benzene



Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Repor	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
EP080: BTEXN (QC	CLot: 4543663) - contir	nued							
ES2230185-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		Pd         10000 Common         2         1         1           EP080: meta- & para-Xylene         106-38-3         0.5         mg/kg         <0.5							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2230446-010	SB06_0.7-0.8	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
Sub-Matrix: WATER					·	Laboratory	Duplicate (DUP) Repor	1	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020T: Total Meta	Is by ICP-MS (QC Lot:								
ES2230365-125	Anonymous	,	7440-43-9	0.0001	mg/L	< 0.0001	<0.0001	0.0	No Limit
			7440-38-2				<0.001	0.0	No Limit
					-		0.002	0.0	No Limit
							0.001	0.0	No Limit
		• •			-		<0.001	0.0	No Limit
			7440-02-0		-		<0.001	0.0	No Limit
					-		< 0.005	0.0	No Limit
ES2230446-015	RIN_01		7440-43-9	0.0001		< 0.0001	<0.0001	0.0	No Limit
	-		7440-38-2	0.001	_	<0.001	<0.001	0.0	No Limit
			7440-47-3	0.001		<0.001	0.002	0.0	No Limit
			7440-50-8	0.001	_	<0.001	<0.001	0.0	No Limit
		•••					<0.001	0.0	No Limit
			7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
			7440-66-6	0.005	mg/L	<0.005	0.006	0.0	No Limit
EG035T: Total Rec	overable Mercurv bv Fl	IMS (QC Lot: 4549781)							
ES2226967-008	Anonymous		7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2230415-006	Anonymous		7439-97-6	0.0001	-	< 0.0001	<0.0001	0.0	No Limit
	etroleum Hydrocarbons				5			-	
ES2230398-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2230571-013	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
		ons - NEPM 2013 Fractions (QC Lot: 4546889)		-	10			-	
ES2230398-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.0	No Limit
ES2230571-013	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	-		00_010		F-3' =				
LF000. BTEXN (QU	- LOL. 4340003)								

71-43-2

1

µg/L

<1

<1

0.0

No Limit

Page	: 7 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 4546889) - contin	nued							
ES2230398-001	Anonymous	EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
	EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit	
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
ES2230571-013	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit



# Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES(QCL	ot: 4544368)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	93.8	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	104	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	102	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	103	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	94.6	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	92.2	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	86.4	66.0	133
EG005(ED093)T: Total Metals by ICP-AES(QCL	ot: 4544370)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	107	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	112	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	111	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	111	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	108	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	99.2	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	95.4	66.0	133
EG035T: Total Recoverable Mercury by FIMS(	QCLot: 4544369)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	90.2	70.0	125
EP066: Polychlorinated Biphenyls (PCB) (QCL	ot: 4543030)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	100	62.0	126
EP068A: Organochlorine Pesticides (OC) (QCL	ot: 4543029)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.0	69.0	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	65.0	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	89.4	67.0	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.2	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.1	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.0	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	69.0	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	90.4	62.0	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.6	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	97.9	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.4	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	92.2	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	95.9	67.0	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.2	67.0	123

Page	: 9 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL			Method Blank (MB) Report	0.7	Laboratory Control Spike (LCS) Report		1	
					Spike	Spike Recovery (%)		e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Hig
EP068A: Organochlorine Pesticides (OC) (QCLot:	,							
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	69.0	11:
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.5	69.0	12
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	92.9	56.0	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	62.0	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	84.2	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	97.1	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	83.2	54.0	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	s (QCLot: 4543028)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	95.6	77.0	12
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	93.8	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.1	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.6	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	90.2	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	91.4	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	90.9	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	104	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	88.7	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	86.0	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	85.4	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	86.9	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	86.0	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	78.5	61.0	12
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	75.8	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	75.9	63.0	12'
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 4543027)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	96.6	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	94.9	77.0	13'
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	90.2	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 4543663)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	118	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions (QCLo	ot: 4543 <u>027)</u>						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	98.2	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	91.8	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	90.4	63.0	13
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions (QCL	ot: 4543663)						

Page	: 10 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013

EP068: Endrin

EP068: beta-Endosulfan



65.2

67.3

113

114

97.9

94.8

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 4543663) - continued								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	99.5	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	108	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	108	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	109	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	110	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	101	63.0	119
ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 45497	(61)						-	5
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	104	82.0	114
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	104	84.0	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	100	86.0	116
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	102	83.0	118
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.4	85.0	115
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	102	84.0	116
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	102	79.0	117
EG035T: Total Recoverable Mercury by FIMS(	OCL at: 4549784)		Ū					
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	91.8	77.0	111
,		0.0001	ing/E	40.0001	0.01 mg/L	51.6	11.0	
EP066: Polychlorinated Biphenyls (PCB) (QCLc	ot: 4543163)	1	ug/l	<1	10 µg/L	89.4	68.9	113
EP066: Total Polychlorinated biphenyls		I	µg/L	~1	το μy/L	09.4	00.9	113
EP068A: Organochlorine Pesticides (OC) (QCL								
EP068: alpha-BHC	319-84-6	0.5	µg/L	<0.5	5 µg/L	85.9	64.9	107
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	5 µg/L	82.2	58.3	111
EP068: beta-BHC	319-85-7	0.5	µg/L	<0.5	5 µg/L	91.8	69.0	117
EP068: gamma-BHC	58-89-9	0.5	µg/L	<0.5	5 µg/L	92.0	70.0	112
EP068: delta-BHC	319-86-8	0.5	µg/L	<0.5	5 µg/L	103	68.9	110
EP068: Heptachlor	76-44-8	0.5	µg/L	<0.5	5 µg/L	92.7	65.2	108
EP068: Aldrin	309-00-2	0.5	µg/L	<0.5	5 µg/L	92.3	65.8	109
P068: Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	5 µg/L	97.3	67.1	107
EP068: trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	5 µg/L	96.6	64.1	110
EP068: alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	5 µg/L	95.7	66.7	112
EP068: cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	5 µg/L	95.6	63.2	111
EP068: Dieldrin	60-57-1	0.5	µg/L	<0.5	5 µg/L	95.7	65.2	113
EP068: 4.4`-DDE	72-55-9	0.5	µg/L	<0.5	5 µg/L	95.2	66.0	112

µg/L

µg/L

<0.5

<0.5

5 µg/L

5 µg/L

72-20-8

33213-65-9

0.5

0.5

Page	: 11 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EP068A: Organochlorine Pesticides (OC) (QCL	ot: 4543160) - continued							
EP068: 4.4`-DDD	72-54-8	0.5	µg/L	<0.5	5 µg/L	95.4	72.0	122
EP068: Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	5 µg/L	85.3	66.9	109
EP068: Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	5 µg/L	103	65.2	112
EP068: 4.4`-DDT	50-29-3	2	µg/L	<2.0	5 µg/L	102	65.2	112
EP068: Endrin ketone	53494-70-5	0.5	µg/L	<0.5	5 µg/L	103	63.8	110
EP068: Methoxychlor	72-43-5	2	µg/L	<2.0	5 µg/L	105	61.1	114
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 4543162)							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	66.9	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	68.9	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	87.9	62.2	113
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	72.5	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	69.6	62.6	116
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	69.4	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	82.0	63.6	118
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	81.9	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	73.9	64.1	117
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	77.4	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	75.4	61.7	119
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	74.7	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	76.3	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	68.5	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	68.9	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	74.6	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QC	:Lot: 4543161)							
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	83.9	53.7	97.0
EP071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	71.0	63.3	107
EP071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	81.0	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 4546889)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	83.0	75.0	127
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Fractions (OCL o	t· 4543161)						
EP0000071. Total Recoverable Hydrocarbons - P EP071: >C10 - C16 Fraction		100	µg/L	<100	500 µg/L	55.2	53.9	95.
EP071: >C10 - C10 Fraction EP071: >C16 - C34 Fraction		100	μg/L	<100	700 µg/L	76.3	57.8	110
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 µg/L	96.4	50.5	115
			P3' -	.100	000 µg/L	00.1	00.0	
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Fractions (QCLo C6 C10	t: 4546889) 20	110/	<20	310	87.7	75.0	127
EP080: C6 - C10 Fraction		20	μg/L	~20	310 µg/L	01.1	75.0	127
EP080: BTEXN (QCLot: 4546889)					40 "	00.0		
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	90.2	70.0	122

Page	: 12 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Spike Recovery (%) Acceptable L		e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 4546889) - continued								
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	92.4	69.0	123
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	95.8	70.0	120
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	94.3	69.0	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 µg/L	98.8	72.0	122
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	107	70.0	120

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4544368)								
ES2230282-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	106	70.0	130		
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.7	70.0	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	98.4	68.0	132		
		EG005T: Copper	7440-50-8	250 mg/kg	109	70.0	130		
		EG005T: Lead	7439-92-1	250 mg/kg	96.6	70.0	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	94.0	70.0	130		
		EG005T: Zinc	7440-66-6	250 mg/kg	112	66.0	133		
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4544370)								
EW2203916-014 Anonymous	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	92.1	70.0	130		
	EG005T: Cadmium	7440-43-9	50 mg/kg	100	70.0	130			
		EG005T: Chromium	7440-47-3	50 mg/kg	95.5	68.0	132		
		EG005T: Copper	7440-50-8	250 mg/kg	99.2	70.0	130		
		EG005T: Lead	7439-92-1	250 mg/kg	99.9	70.0	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	94.3	70.0	130		
		EG005T: Zinc	7440-66-6	250 mg/kg	94.0	66.0	133		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 4544369)								
ES2230282-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	98.5	70.0	130		
EP066: Polychlorii	nated Biphenyls (PCB) (QCLot: 4543030)								
ES2230282-001	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	94.9	70.0	130		
EP068A: Organocl	nlorine Pesticides (OC) (QCLot: 4543029)								
ES2230282-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	80.7	70.0	130		
		EP068: Heptachlor	76-44-8	0.5 mg/kg	79.8	70.0	130		
		EP068: Aldrin	309-00-2	0.5 mg/kg	91.2	70.0	130		

Page	: 13 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Higl
EP068A: Organocl	hlorine Pesticides (OC) (QCLot: 4543029) - c	ontinued					
ES2230282-001	Anonymous	EP068: Dieldrin	60-57-1	0.5 mg/kg	110	70.0	130
	-	EP068: Endrin	72-20-8	2 mg/kg	86.7	70.0	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	74.0	70.0	130
EP075(SIM)B: Poly	/nuclear Aromatic Hydrocarbons (QCLot: 454	13028)					
ES2230282-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	92.1	70.0	130
	- ,	EP075(SIM): Pyrene	129-00-0	10 mg/kg	93.8	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4543027)				1		
ES2230282-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	88.4	73.0	137
	, and y mous	EP071: C15 - C28 Fraction		3100 mg/kg	86.6	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	93.1	52.0	132
ED080/071. Total F	Petroleum Hydrocarbons (QCLot: 4543663)			Looo mg/ng	00.1		132
ES2230185-001	Anonymous			32.5 mg/kg	123	70.0	130
	•	EP080: C6 - C9 Fraction		52.5 mg/kg	123	70.0	130
	Recoverable Hydrocarbons - NEPM 2013 Fract	tions (QCLot: 4543027)					
ES2230282-001 Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	83.0	73.0	137	
	EP071: >C16 - C34 Fraction		4320 mg/kg	91.2	53.0	131	
		EP071: >C34 - C40 Fraction		890 mg/kg	95.4	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fract	tions (QCLot: 4543663)					
ES2230185-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	124	70.0	130
EP080: BTEXN (Q	CLot: 4543663)						
ES2230185-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	91.0	70.0	130
	5	EP080: Toluene	108-88-3	2.5 mg/kg	99.1	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	99.6	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	98.0	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	102	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.4	70.0	130
ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig
EG020T: <u>Total Met</u>	als by ICP-MS (QCLot: 4549761)						
ES2230372-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	97.3	70.0	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	100	70.0	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	100	70.0	130
		EG020A-T: Copper	7440-50-8	1 mg/L	101	70.0	130
		EG020A-T: Lead	7439-92-1	1 mg/L	120	70.0	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.3	70.0	130

Page	: 14 of 14
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



#### Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number Concentration MS Low High Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4549761) - continued ES2230372-001 Anonymous EG020A-T: Zinc 7440-66-6 1 mg/L 97.6 70.0 130 EG035T: Total Recoverable Mercury by FIMS (QCLot: 4549781) ES2226967-011 Anonymous 7439-97-6 0.01 mg/L 90.0 70.0 130 EG035T: Mercury EP080/071: Total Petroleum Hydrocarbons (QCLot: 4546889) ES2230398-001 Anonymous EP080: C6 - C9 Fraction 325 µg/L 85.3 70.0 130 ----EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4546889) ES2230398-001 Anonymous EP080: C6 - C10 Fraction C6 C10 375 µg/L 85.7 70.0 130 EP080: BTEXN (QCLot: 4546889) ES2230398-001 Anonymous 71-43-2 25 µg/L 78.9 70.0 130 EP080: Benzene 108-88-3 86.5 70.0 130 25 µg/L EP080: Toluene 100-41-4 70.0 130 25 µg/L 91.0 EP080: Ethylbenzene 90.7 70.0 130 EP080: meta- & para-Xylene 108-38-3 25 µg/L 106-42-3 95-47-6 25 µg/L 96.6 70.0 130 EP080: ortho-Xylene 91-20-3 25 µg/L 99.1 70.0 130 EP080: Naphthalene



QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES2230446	Page	: 1 of 10			
Client	: NATION PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney			
Contact	: Laura Martinez	Telephone	: +61-2-8784 8555			
Project	: NP22013	Date Samples Received	: 25-Aug-2022			
Site	:	Issue Date	: 01-Sep-2022			
Sampler	: NP	No. of samples received	: 18			
Order number	: NP22013_1	No. of samples analysed	: 14			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

# **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2230446013	SB08_0.0-0.2	Copper	7440-50-8	29.2 %	0% - 20%	RPD exceeds LOR based limits
EG005(ED093)T: Total Metals by ICP-AES	ES2230446013	SB08_0.0-0.2	Lead	7439-92-1	22.1 %	0% - 20%	RPD exceeds LOR based limits

#### **Regular Sample Surrogates**

#### Sub-Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP068T: Organophosphorus Pesticide Surrogate	ES2230446-015	RIN_01	DEF	78-48-8	63.9 %	66.5-111	Recovery less than lower data quality
						%	objective

### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

Matrix: SOII

Quality Control Sample Type	Co	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	7	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	4	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	10	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	7	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	4	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time.

				Lvalaation	. • = Holding time		in notaing time.
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page	: 3 of 10
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)			·					
Soil Glass Jar - Unpreserved (EA055)								
SB01_0.0,	SB02_0.0,	24-Aug-2022				26-Aug-2022	07-Sep-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01	_							
EA200: AS 4964 - 2004 Identification of Asbestos in	n Soils							
Snap Lock Bag - ACM/Asbestos Grab Bag (EA200)								
SB01_0.0,	SB02_0.0,	24-Aug-2022				26-Aug-2022	20-Feb-2023	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EG005(ED093)T: Total Metals by ICP-AES			_					
Soil Glass Jar - Unpreserved (EG005T)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	27-Aug-2022	20-Feb-2023	-	29-Au <u>g</u> -2022	20-Feb-2023	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)				04.0			01.0	
SB01_0.0,	SB02_0.0,	24-Aug-2022	27-Aug-2022	21-Sep-2022	1	30-Aug-2022	21-Sep-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066)				07.0			00.0.1.0000	
SB01_0.0,	SB02_0.0,	24-Aug-2022	29-Aug-2022	07-Sep-2022	✓	30-Aug-2022	08-Oct-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								

Page	: 4 of 10
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Method			traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	29-Aug-2022	07-Sep-2022	1	30-Aug-2022	08-Oct-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EP075(SIM)B: Polynuclear Aromatic Hydro	ocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
SB01_0.0,	SB02_0.0,	24-Aug-2022	29-Aug-2022	07-Sep-2022	1	30-Aug-2022	08-Oct-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EP080/071: Total Petroleum Hydrocarbons	3							
Soil Glass Jar - Unpreserved (EP080)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	26-Aug-2022	07-Sep-2022	-	27-Aug-2022	07-Sep-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01,	TB_24-8-22							
Soil Glass Jar - Unpreserved (EP071)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	29-Aug-2022	07-Sep-2022	1	30-Aug-2022	08-Oct-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								

Page	5 of 10
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Matrix: SOIL			-		Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tir
Method Container / Client Sample ID(s)			Ex	traction / Preparation		Analysis		
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	26-Aug-2022	07-Sep-2022	1	27-Aug-2022	07-Sep-2022	<ul> <li>✓</li> </ul>
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01,	TB_24-8-22							
Soil Glass Jar - Unpreserved (EP071)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	29-Aug-2022	07-Sep-2022	1	30-Aug-2022	08-Oct-2022	<ul> <li>✓</li> </ul>
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
SB01_0.0,	SB02_0.0,	24-Aug-2022	26-Aug-2022	07-Sep-2022	1	27-Aug-2022	07-Sep-2022	✓
SB03_0.0-0.2,	SB04_0.0-0.2,							
SB04_0.4-0.6,	SB05_0.0-0.2,							
SB06_0.0-0.2,	SB06_0.4-0.6,							
SB07_0.0-0.2,	SB08_0.0-0.2,							
QAQC01,	TB_24-8-22,							
TS_24-8-22								
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tir
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatior
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EC	G020A-T)	24-Aug-2022	31-Aug-2022	20-Feb-2023	1	31-Aug-2022	20-Feb-2023	
RIN_01		24-Aug-2022	51-Aug-2022	20-1 60-2023	~	51-Aug-2022	20-1 60-2023	-
EG035T: Total Recoverable Mercury by FIMS			1			1		1
Clear Plastic Bottle - Nitric Acid; Unfiltered (EC RIN 01	G035T)	24-Aug-2022				31-Aug-2022	21-Sep-2022	1
EP066: Polychlorinated Biphenyls (PCB)								•
Amber Glass Bottle - Unpreserved (EP066)								
RIN_01		24-Aug-2022	29-Aug-2022	31-Aug-2022	1	31-Aug-2022	08-Oct-2022	✓
EP068A: Organochlorine Pesticides (OC)								
Amber Glass Bottle - Unpreserved (EP068)								
RIN_01		24-Aug-2022	29-Aug-2022	31-Aug-2022	1	31-Aug-2022	08-Oct-2022	✓

Page	: 6 of 10
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) RIN_01	24-Aug-2022	29-Aug-2022	31-Aug-2022	1	31-Aug-2022	08-Oct-2022	~
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) RIN_01	24-Aug-2022	29-Aug-2022	31-Aug-2022	~	31-Aug-2022	08-Oct-2022	~
Amber VOC Vial - Sulfuric Acid (EP080) RIN_01	24-Aug-2022	30-Aug-2022	07-Sep-2022	~	30-Aug-2022	07-Sep-2022	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) RIN_01	24-Aug-2022	29-Aug-2022	31-Aug-2022	1	31-Aug-2022	08-Oct-2022	~
Amber VOC Vial - Sulfuric Acid (EP080) RIN_01	24-Aug-2022	30-Aug-2022	07-Sep-2022	1	30-Aug-2022	07-Sep-2022	1
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) RIN_01	24-Aug-2022	30-Aug-2022	07-Sep-2022	1	30-Aug-2022	07-Sep-2022	~



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; 🖌 = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	3	27	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	2	14	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	14	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	21	9.52	5.00	~	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	<ul> <li>✓</li> </ul>	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	21	9.52	5.00	~	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	<ul> <li>✓</li> </ul>	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	16	6.25	5.00		NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	21	9.52	5.00	~	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	<ul> <li>✓</li> </ul>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				- Evaluatio	n: <b>x</b> = Quality Co	introl frequency	not within specification ; $\checkmark$ = Quality Control frequency within specification
Quality Control Sample Type	Ì		ount		Rate (%)	intercency	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
r maryuoar mourodo		40	ricoului	Actual	Expected		

Page	: 8 of 10
Work Order	: ES2230446
Client	: NATION PARTNERS PTY LTD
Project	: NP22013



Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; $\checkmark$ = Quality Control frequency within specificatio	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	0	7	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	0	4	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	0	10	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	<ul> <li>✓</li> </ul>	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	0	7	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard	
		0	4	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	•						
Polychlorinated Biphenyls (PCB) Total Mercury by FIMS	EP066 EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
		-	20 13	5.00 7.69	5.00 5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1				-		



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).



Analytical Methods	Method	Matrix	Method Descriptions
Polychlorinated Biphenyls (PCB)	EP066	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Pesticides by GCMS	EP068	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

ALCOL / S. R. P. S.			iternial Sheet:	Environmental Division	Sydney work Order Reference	FS2230446		二十二次が大力です。				Telephone: - 61-2-8784 8565								Eurofin HUTBON		
SE ONLY (Elicio)	Lab Perence en Cryspatientaby / Date: Rollinguished By / Dam	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+2}} \frac{1}{\sqrt{2}} \frac{1}{$	Witachtad By PO / Internal Sheet, comments in international autors at anotes repairing apering at						Contraction of the second seco	A Car	N.		1			*/: ://:		4		Please forward to Eurofin		
SU VE	¢.	méner suits price? 5 fébred botte i estat ed	рюң ис			*		7.8	V	1-+			1			a	2					
	REU	4. A M		1. se		40		* ************************************		· · · · · ·			u			4 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1			35	1
ENCE NUMBER	24/8/22	2.5.18.12. C	as at			* *	4			11	1							1	9		X	12 A.
	AL 1 2	11+ 25	16X\$1644C6-C10	0,**	2 × 1		н.	E.	H	4 M	A State				H.	at de la composition de la composition de la composition de la composition de la composition de la comp	1 1 1 1 1 1	1		- 9 - 9	4	
TURNAROUND REOUREMENTS : Sees	RELINGUISHED BY N Philips DATE/TIME	ZA-UR-ZUZZ	י' או' ביוי' אַס) צ' כַּק' בַּג' כַּז' אַאָּפּוַקאַ שַּׁפּוּקז אַז	N) (W	a <b>x</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	R P	1	×	*	31 - 1 1997 - 1	in fine	4	R	н,	*			×		- Q -
TURNAR 1550045 0.7.AT	CONTACT PH 0410 SAMPLER WOBILE. RELINOUISHED BY: RECEIVED BY: ESDAT FORMAT N Phillips Contaction No. Date: THE Contaction No. Date: THE Contact	Ccounts@rations 2	a ni z XIRTAM	# [#]			* 220	• • • • • • • •	1022			+	2022	1		1022	1204)		* 20024	250052022	2000/0022 ·····	24000002
	CONTA SAMPLI ESDAT ESDAT ESDAT ESDAT ESDAT	estes are listed), accor ( DISPOSAL: )ETALS	SI WATER (M)	ZZOZODAZ A	2408/2022		2102/00/2	2409/2022	244847022	24/08/2022		2406/3022	24000/2022	2204/390/PC	2202/90/72	249927022	TEDUNONE - V	2202/2002 . 2000/2022	22002194892		2000	1 2
CHAIN OF CUSTODY CUSTODY CUSTODY ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIENT: ACLIEN	PROJECT MAMAGER: Laura Martinez SMPLEER: MP COC emailed to ALS? Yes ECOC emailed to ALS? Yes Email Reports to twit Potax: te PLM if mo other addresses are listed. Email Reports to twit Potax: te PLM if mo other addresses are listed.	spect	SAMPLEID DATE (11)	and the second se	the bar bar a	ISB02 0.0-0.2	SB04 0.0-0.2 %	SB04 0.4-0.6		SB05 0.4-0.6	SB06 0.0-0.2	SB06 0.4-0.6	10 SB06 07-0.8	11 SB07 0.0-0.2	SB07 0.4-4.0	SB08 0.0-0.2	SBUD VISHID	1	and a second second		<u>OAOE02</u>	TB 24-8-22 TS 24-8-22
CLIENT: Nation Part OFFICE: PROJECT NP2013	PROJECT MAN SAMPLER: NP COC amailed to Email Reports Imartinez@nati	Email Invoice COMMENTS/	TAB ID		S - C	and the	t	I willing	9		00	9	0		1.7 8		C		91	1.1	19	20



Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010

Attention:

Laura Martinez

Report Project name Project ID Received Date **918696-S** NP22013 NP22013_1 Aug 29, 2022

Client Sample ID			GO1QAQC2
Sample Matrix			Soil S22-
Eurofins Sample No.			S22- Au0067209
Date Sampled			Aug 24, 2022
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	59
TRH C15-C28	50	mg/kg	460
TRH C29-C36	50	mg/kg	270
TRH C10-C36 (Total)	50	mg/kg	789
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	90
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	90
TRH >C16-C34	100	mg/kg	630
TRH >C34-C40	100	mg/kg	160
TRH >C10-C40 (total)*	100	mg/kg	880
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85
Polycyclic Aromatic Hydrocarbons	L		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.4
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	1.1
Benzo(a)pyrene	0.5	mg/kg	0.6
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.7
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.7
Chrysene	0.5	mg/kg	1.2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.



Client Sample ID			G01QAQC2
Sample Matrix			Soil
			S22-
Eurofins Sample No.			Au0067209
Date Sampled			Aug 24, 2022
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	I -		
Fluoranthene	0.5	mg/kg	1.4
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	1.3
Pyrene	0.5	mg/kg	1.2
Total PAH*	0.5	mg/kg	8.2
2-Fluorobiphenyl (surr.)	1	%	106
p-Terphenyl-d14 (surr.)	1	%	121
Organochlorine Pesticides	L		
Chlordanes - Total	0.1	mg/kg	< 1
4.4'-DDD	0.05	mg/kg	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.5
a-HCH	0.05	mg/kg	< 0.5
Aldrin	0.05	mg/kg	< 0.5
b-HCH	0.05	mg/kg	< 0.5
d-HCH	0.05	mg/kg	< 0.5
Dieldrin	0.05	mg/kg	< 0.5
Endosulfan I	0.05	mg/kg	< 0.5
Endosulfan II	0.05	mg/kg	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.5
Endrin	0.05	mg/kg	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.5
Endrin ketone	0.05	mg/kg	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.5
Heptachlor	0.05	mg/kg	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.5
Methoxychlor	0.05	mg/kg	< 0.5
Toxaphene	0.5	mg/kg	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	82
Tetrachloro-m-xylene (surr.)	1	%	99
Polychlorinated Biphenyls		1	
Aroclor-1016	0.1	mg/kg	< 1
Aroclor-1221	0.1	mg/kg	< 1
Aroclor-1232	0.1	mg/kg	< 1
Aroclor-1242	0.1	mg/kg	< 1
Aroclor-1248	0.1	mg/kg	< 1
Aroclor-1254	0.1	mg/kg	< 1
Aroclor-1260	0.1	mg/kg	< 1
Total PCB*	0.1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	82
Tetrachloro-m-xylene (surr.)	1	%	99



Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			^{G01} QAQC2 Soil S22- Au0067209 Aug 24, 2022
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	11
Cadmium	0.4	mg/kg	4.6
Chromium	5	mg/kg	13
Copper	5	mg/kg	260
Lead	5	mg/kg	650
Mercury	0.1	mg/kg	0.2
Nickel	5	mg/kg	12
Zinc	5	mg/kg	970
% Moisture	1	%	16



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Aug 30, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Aug 30, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Aug 30, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Aug 30, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

Eurofins Environment Testing Australia Pty I ABN: 50 005 085 521 Melbourne Geelong Sy			g Australia Pty Lto	ł						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-		
web: ww	w.eurofins.com.au		Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	th Grovedal VIC 3216 5000 Tel: +61 3	e Girrav NSW	lagowar R veen 2145 61 2 9900	8400	Mitch ACT Tel: -	1,2 Dacre Street	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2075	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	npany Name: dress:	Nation Part 306 / 50 Ho Surry Hills NSW 2010	ners Pty Ltd lt Street,				F	Order I Report Phone: Fax:	#: 91	8696 05 821 580		Received: Due: Priority: Contact Name:	Aug 29, 2022 4:00 Sep 5, 2022 5 Day Laura Martinez	РМ
	ject Name: ject ID:	NP22013 NP22013_1									Eu	rofins Analytical Serv	rices Manager : Rot	pert Biviano
		S	ample Detail			Asbestos - AS4964	Moisture Set	Suite B10A:TRH/BTEXN/PAH/OCP/PCB/Metals8						
		- NATA # 1261	Site # 18217	7		X	X	X	_					
	nal Laborator	<b>^</b>	0	<b>BA</b> - toda					-					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
	QAQC2	Aug 24, 2022		Soil	S22-Au006720	9 X	X	X	-					
Test	Counts					1	1	1						



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

e inte			
mg/kg: milligrams pe	r kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	n	ppb: parts per billion	%: Percentage
org/100 mL: Organis	ms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

#### Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



## **Quality Control Results**

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank			н I			
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank			1 1			
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endosulari suprate	mg/kg	< 0.05		0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				_	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	<2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	<5	5	Pass	
LCS - % Recovery	Ing/kg			1 433	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	80	70-130	Pass	
TRH C10-C14	%	91	70-130	Pass	
Naphthalene	%	97	70-130	Pass	
TRH C6-C10	%	80	70-130	Pass	
TRH >C10-C16	%	87	70-130	Pass	
LCS - % Recovery	/6	07	70-130	1 435	
BTEX					
	%	107	70.120	Baaa	
Benzene		107	70-130	Pass	
	%	103	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	102	70-130	Pass	
o-Xylene	%	102	70-130	Pass	
Xylenes - Total*	%	102	70-130	Pass	
LCS - % Recovery		<u>г</u>			
Polycyclic Aromatic Hydrocarbons	<b>^</b>	101	70.400	Dest	
Acenaphthene	%	104	70-130	Pass	
Acenaphthylene	%	103	70-130	Pass	
Anthracene	%	100	70-130	Pass	
Benz(a)anthracene	%	114	70-130	Pass	
Benzo(a)pyrene	%	103	70-130	Pass	
Benzo(b&j)fluoranthene	%	119	70-130	Pass	
Benzo(g.h.i)perylene	%	117	70-130	Pass	
Benzo(k)fluoranthene	%	103	70-130	Pass	
Chrysene	%	111	70-130	Pass	


Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Dibenz(a.h)anthracene			%	96		70-130	Pass	
Fluoranthene			%	93		70-130	Pass	
Fluorene			%	105		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	97		70-130	Pass	
Naphthalene			%	104		70-130	Pass	
Phenanthrene			%	121		70-130	Pass	
Pyrene			%	105		70-130	Pass	
LCS - % Recovery				1				
Organochlorine Pesticides								
Chlordanes - Total			%	92		70-130	Pass	
4.4'-DDD			%	100		70-130	Pass	
4.4'-DDE			%	100		70-130	Pass	
4.4'-DDT			%	93		70-130	Pass	
a-HCH			%	86		70-130	Pass	
Aldrin			%	96		70-130	Pass	
b-HCH			%	95		70-130	Pass	
d-HCH			%	86		70-130	Pass	
Dieldrin			%	87		70-130	Pass	
Endosulfan I			%	98		70-130	Pass	
Endosulfan II			%	91		70-130	Pass	
Endosulfan sulphate			%	90		70-130	Pass	
Endrin			%	92		70-130	Pass	
Endrin aldehyde			%	74		70-130	Pass	
Endrin ketone			%	81		70-130	Pass	
g-HCH (Lindane)			%	90		70-130	Pass	
Heptachlor			%	90		70-130	Pass	
Heptachlor epoxide			%	92		70-130	Pass	
Heptachlorobenzene			%	90		70-130	Pass	
Methoxychlor			%	80		70-130	Pass	
LCS - % Recovery			70	00		70-130	Fass	
Polychlorinated Biphenyls								
Aroclor-1016			%	77		70-130	Pass	
			%	71		70-130	Pass	
Aroclor-1260		70			70-130	Pass		
LCS - % Recovery Heavy Metals								
Arsenic			%	116		80-120	Pass	
Cadmium			%			80-120		
				113			Pass	
Chromium			%	112		80-120	Pass	
Copper			%	110		80-120	Pass	
Lead			%	105		80-120	Pass	
Mercury			%	110		80-120	Pass	
Nickel		%	107		80-120	Pass		
Zinc		<u> </u>	%	109		80-120	Pass	Quelle
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	1			Result 1				
TRH C6-C9	S22-Au0071624	NCP	%	72		70-130	Pass	
TRH C10-C14	S22-Au0054102	NCP	%	86		70-130	Pass	
Naphthalene	S22-Au0071624	NCP	%	79		70-130	Pass	
TRH C6-C10	S22-Au0071624	NCP	%	74		70-130	Pass	
TRH >C10-C16	S22-Au0054102	NCP	%	84		70-130	Pass	
Spike - % Recovery					1			
втех	1			Result 1				
Benzene	S22-Au0071624	NCP	%	85		70-130	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S22-Au0071624	NCP	%	88	70-130	Pass	
Ethylbenzene	S22-Au0071624	NCP	%	79	70-130	Pass	
m&p-Xylenes	S22-Au0071624	NCP	%	89	70-130	Pass	
o-Xylene	S22-Au0071624	NCP	%	88	70-130	Pass	
Xylenes - Total*	S22-Au0071624	NCP	%	88	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ons			Result 1			
Acenaphthene	S22-Au0068380	NCP	%	91	70-130	Pass	
Acenaphthylene	S22-Au0068380	NCP	%	88	70-130	Pass	
Anthracene	S22-Au0068380	NCP	%	106	70-130	Pass	
Benz(a)anthracene	S22-Au0068380	NCP	%	90	70-130	Pass	
Benzo(a)pyrene	S22-Au0068380	NCP	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	S22-Au0068380	NCP	%	92	70-130	Pass	
Benzo(g.h.i)perylene	S22-Au0068380	NCP	%	100	70-130	Pass	
Benzo(k)fluoranthene	S22-Au0068380	NCP	%	101	70-130	Pass	
Chrysene	S22-Au0068380	NCP	%	99	70-130	Pass	
Dibenz(a.h)anthracene	S22-Au0068380	NCP	%	90	70-130	Pass	
Fluoranthene	S22-Au0068380	NCP	%	87	70-130	Pass	
Fluorene	S22-Au0068380	NCP	%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S22-Au0068380	NCP	%	89	70-130	Pass	
Naphthalene	S22-Au0068380	NCP	%	92	70-130	Pass	
Phenanthrene	S22-Au0068380	NCP	%	90	70-130	Pass	
Pyrene	S22-Au0068380	NCP	%	83	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S22-Au0063102	NCP	%	86	70-130	Pass	
4.4'-DDD	S22-Au0063102	NCP	%	89	70-130	Pass	
4.4'-DDE	S22-Au0063102	NCP	%	94	70-130	Pass	
4.4'-DDT	S22-Au0063102	NCP	%	76	70-130	Pass	
a-HCH	S22-Au0063102	NCP	%	75	70-130	Pass	
Aldrin	S22-Au0063102	NCP	%	85	70-130	Pass	
b-HCH	S22-Au0063102	NCP	%	86	70-130	Pass	
d-HCH	S22-Au0063102	NCP	%	82	70-130	Pass	
Dieldrin	S22-Au0063102	NCP	%	75	70-130	Pass	
Endosulfan I	S22-Au0063102	NCP	%	90	70-130	Pass	
Endosulfan II	S22-Au0063102	NCP	%	80	70-130	Pass	
Endosulfan sulphate	S22-Au0063102	NCP	%	74	70-130	Pass	
Endrin	S22-Au0063102	NCP	%	73	70-130	Pass	
Endrin ketone	S22-Au0063102	NCP	%	76	70-130	Pass	
g-HCH (Lindane)	S22-Au0063102	NCP	%	74	70-130	Pass	
Heptachlor	S22-Au0063102	NCP	%	84	70-130	Pass	
Heptachlor epoxide	S22-Au0063102	NCP	%	81	70-130	Pass	
Hexachlorobenzene	S22-Au0063102	NCP	%	90	70-130	Pass	
Methoxychlor	S22-Au0057091	NCP	%	74	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	S22-Au0063102	NCP	%	70	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S22-Au0067310	NCP	%	125	75-125	Pass	
Cadmium	S22-Au0067310	NCP	%	113	75-125	Pass	
Chromium	S22-Au0067310	NCP	%	95	75-125	Pass	
Copper	S22-Au0067310	NCP	%	110	75-125	Pass	
Lead	S22-Au0067310	NCP	%	93	75-125	Pass	



Mercury         S22-Au0067310         NCP         %         110           Nickel         S22-Au0067310         NCP         %         107         Z           Zinc         S22-Au0067310         NCP         %         107         Z           Test         Lab Sample ID         QA Source         Units         Result 1         Result 2           Duplicate          File         C6-C9         S22-Au0067095         NCP         mg/kg         35         38         10           TRH C6-C9         S22-Au0068916         NCP         mg/kg         35         38         10           TRH C10-C14         S22-Au0068916         NCP         mg/kg         1000         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110	Acceptance Limits	e Pass Limits	Qualifying Code
Zinc         S22-Au0067310         NCP         %         103         Inits           Test         Lab Sample ID         QA Source         Units         Result 1           Duplicate         Feasult 1         Result 1         Result 1           Total Recoverable Hydrocarbons         S22-Au0069916         NCP         mg/kg         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0         < 2.0 <th< td=""><td>75-125</td><td>Pass</td><td></td></th<>	75-125	Pass	
Test         Lab Sample ID         OA Source         Units         Result 1         Feasult 1           Duplicate         FR         S22-Au0067095         NCP         mg/kg         35         36         1.7           TRH C16-C34         S22-Au0069916         NCP         mg/kg         520         580         1.1           TRH C10-C14         S22-Au0069916         NCP         mg/kg         520         580         1.1           TRH C15-C28         S22-Au0069916         NCP         mg/kg         <0.0	75-125	Pass	
Lab Sampie ID         Source         Office         Peckut 1         Result 2         Peckut 2           Duplicate         Trell Co-C29         \$22-Au0067995         NCP         mg/kg         <20	75-125	Pass	
Total Recoverable Hydrocarbons         Result 1         Result 2         RP           TRH C6-C9         \$22-Au0067995         NCP         mg/kg         420         <20	Acceptance Limits	Pass Limits	Qualifying Code
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	1	
TRH C10-C14         S22-Au0069916         NCP         mg/kg         35         36         1.0.           TRH C15-C28         S22-Au0069916         NCP         mg/kg         520         580         11.           TRH C29-C36         S22-Au0069916         NCP         mg/kg         1000         1200         11           Maphthalene         S22-Au0067095         NCP         mg/kg         <0.5	D		
TRH C15-C28         S22-Au0069916         NCP         mg/kg         520         580         11           TRH C29-C36         S22-Au0069916         NCP         mg/kg         1000         1200         11           Naphthalene         S22-Au0067095         NCP         mg/kg         <0.5	1 30%	Pass	
TRH C29-C36         S22-Au0069916         NCP         mg/kg         1000         1200         11           Naphthalene         S22-Au0067095         NCP         mg/kg         <.0.5	0 30%	Pass	
Naphthalene         S22-Au0067095         NCP         mg/kg         < 0.5         < 0.5         < 0.5           TRH C6-C10         S22-Au0067095         NCP         mg/kg         < 20	2 30%	Pass	
TRH C6-C10         S22-Au0067095         NCP         mg/kg         < 2.0         < 2.0         < < 2.0           TRH >C10-C16         S22-Au0069916         NCP         mg/kg         1300         1500         11.           TRH >C16-C34         S22-Au0069916         NCP         mg/kg         690         780         11.           Duplicate          Result 1         Result 2         RF           Benzene         S22-Au0067095         NCP         mg/kg         <0.1	5 30%	Pass	
TRH >C10-C16         S22-Au0069916         NCP         mg/kg         <.50         <.50         <.50           TRH >C34-C40         S22-Au0069916         NCP         mg/kg         690         780         11.           TRH >C34-C40         S22-Au0069916         NCP         mg/kg         690         780         11.           Benzene         S22-Au0067095         NCP         mg/kg         <0.1	1 30%	Pass	
TRH >C16-C34         S22-Au0069916         NCP         mg/kg         1300         1500         14           TRH >C34-C40         S22-Au0069916         NCP         mg/kg         690         780         13           Duplicate         S22-Au0067095         NCP         mg/kg         <0.1	1 30%	Pass	
TRH >C34-C40         S22-Au0069916         NCP         mg/kg         690         780         112           Duplicate         Festit 1         Result 2         Result 3         C2         Au0067095         NCP         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1	1 30%	Pass	
Duplicate         Result 1         Result 2         RF           BTEX         Result 1         Result 2         RF           Benzene         S22-Au0067095         NCP         mg/kg         <0.1	4 30%	Pass	
BTEX         Result 1         Result 2         RFP           Benzene         S22-Au0067095         NCP         mg/kg         < 0.1	2 30%	Pass	
Benzene         S22-Au0067095         NCP         mg/kg         < 0.1         < <           Toluene         S22-Au0067095         NCP         mg/kg         < 0.1			
Toluene         S22-Au0067095         NCP         mg/kg         < 0.1         < 0.1           Ethylbenzene         S22-Au0067095         NCP         mg/kg         < 0.1	D		
Toluene         S22-Au0067095         NCP         mg/kg         < 0.1         < 0.1           Ethylbenzene         S22-Au0067095         NCP         mg/kg         < 0.1	1 30%	Pass	
Ethylbenzene         S22-Au0067095         NCP         mg/kg         < 0.1         < 0.1           m&p-Xylenes         S22-Au0067095         NCP         mg/kg         < 0.2		Pass	
mkp-Xylenes         S22-Au0067095         NCP         mg/kg         < 0.2         < 0.2         < 0.2           o-Xylene         S22-Au0067095         NCP         mg/kg         < 0.1	1 30%	Pass	
o-Xylene         S22-Au0067095         NCP         mg/kg         < 0.1         < 0.1           Xylenes - Total*         S22-Au0067095         NCP         mg/kg         < 0.3		Pass	
Xylenes - Total*         S22-Au0067095         NCP         mg/kg         < 0.3         < 0.3         < <           Duplicate         Polycyclic Aromatic Hydrocarbons         Result 1         Result 2         RF           Acenaphthene         S22-Au0068381         NCP         mg/kg         < 0.5		Pass	
Duplicate         Result 1         Result 2         RP           Polycyclic Aromatic Hydrocarbons         Result 1         Result 2         RP           Acenaphthene         S22-Au0068381         NCP         mg/kg         < 0.5		Pass	
Polycyclic Aromatic Hydrocarbons         Result 1         Result 2         RP           Acenaphthene         S22-Au0068381         NCP         mg/kg         < 0.5		1 400	
Acenaphthene         S22-Au0068381         NCP         mg/kg         < 0.5         < 0.5         < <           Acenaphthylene         S22-Au0068381         NCP         mg/kg         1.0         2.2         74           Anthracene         S22-Au0068381         NCP         mg/kg         1.0         2.2         74           Benz(a)anthracene         S22-Au0068381         NCP         mg/kg         3.4         5.5         44           Benzo(a)pyrene         S22-Au0068381         NCP         mg/kg         4.4         7.6         53           Benzo(b&i)fluoranthene         S22-Au0068381         NCP         mg/kg         4.2         8.1         66           Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         4.4         6.5         33           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Fluorene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Picoranthene         S22-Au0068381         NCP         mg/kg         0.5         0.	D		
Acenaphthylene         S22-Au0068381         NCP $mg/kg$ < 0.5         < 0.5         < 0.5           Anthracene         S22-Au0068381         NCP $mg/kg$ 1.0         2.2         74           Benz(a)anthracene         S22-Au0068381         NCP $mg/kg$ 3.4         5.5         44           Benzo(a)pyrene         S22-Au0068381         NCP $mg/kg$ 4.4         7.6         55           Benzo(b&j)fluoranthene         S22-Au0068381         NCP $mg/kg$ 4.0         7.4         55           Benzo(b,i)perylene         S22-Au0068381         NCP $mg/kg$ 4.2         8.1         66           Benzo(k)fluoranthene         S22-Au0068381         NCP $mg/kg$ 4.4         6.5         33           Dibenz(a,h)anthracene         S22-Au0068381         NCP $mg/kg$ 0.9         1.5         55           Fluorene         S22-Au0068381         NCP $mg/kg$ 8.0         14         55           Fluorene         S22-Au0068381         NCP $mg/kg$ 2.8         4.9         54           Naphthalene         S22-Au0068381         NCP $mg/kg$ <t< td=""><td></td><td>Pass</td><td></td></t<>		Pass	
Anthracene         S22-Au0068381         NCP $mg/kg$ 1.0         2.2         74           Benz(a)anthracene         S22-Au0068381         NCP $mg/kg$ 3.4         5.5         44           Benzo(a)pyrene         S22-Au0068381         NCP $mg/kg$ 4.4         7.6         55           Benzo(bkj)fluoranthene         S22-Au0068381         NCP $mg/kg$ 4.0         7.4         55           Benzo(g,h.i)perylene         S22-Au0068381         NCP $mg/kg$ 4.2         8.1         66           Benzo(k)fluoranthene         S22-Au0068381         NCP $mg/kg$ 3.6         7.0         68           Chrysene         S22-Au0068381         NCP $mg/kg$ 4.4         6.5         33           Dibenz(a,h)anthracene         S22-Au0068381         NCP $mg/kg$ 0.9         1.5         55           Fluoranthene         S22-Au0068381         NCP $mg/kg$ 8.0         14         55           Fluorene         S22-Au0068381         NCP $mg/kg$ 2.8         4.9         56           Naphthalene         S22-Au0068381         NCP $mg/kg$ 2.7 </td <td></td> <td>Pass</td> <td></td>		Pass	
Benz(a)anthracene         S22-Au0068381         NCP         mg/kg         3.4         5.5         44           Benzo(a)pyrene         S22-Au0068381         NCP         mg/kg         4.4         7.6         55           Benzo(bå)jfluoranthene         S22-Au0068381         NCP         mg/kg         4.0         7.4         55           Benzo(g.h.i)perylene         S22-Au0068381         NCP         mg/kg         4.2         8.1         66           Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         3.6         7.0         66           Chrysene         S22-Au0068381         NCP         mg/kg         3.6         7.0         66           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         57           Fluoranthene         S22-Au0068381         NCP         mg/kg         0.9         1.5         57           Fluoranthene         S22-Au0068381         NCP         mg/kg         2.8         0.14         57           Fluorene         S22-Au0068381         NCP         mg/kg         <0.5		Fail	Q15
Benzo(a)pyrene         S22-Au0068381         NCP         mg/kg         4.4         7.6         55           Benzo(b&j)fluoranthene         S22-Au0068381         NCP         mg/kg         4.0         7.4         55           Benzo(b&j)fluoranthene         S22-Au0068381         NCP         mg/kg         4.2         8.1         66           Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         4.4         6.5         33           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         5           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluorene         S22-Au0068381         NCP         mg/kg         2.8         4.9         56           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         88           Pyrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         88           Pyrene         S22-Au0063096         NCP         mg/kg         2.1 <td< td=""><td></td><td>Fail</td><td>Q15</td></td<>		Fail	Q15
Benzo(b&j)fluoranthene         S22-Au0068381         NCP         mg/kg         4.0         7.4         55           Benzo(g.h.i)perylene         S22-Au0068381         NCP         mg/kg         4.2         8.1         64           Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         3.6         7.0         66           Chrysene         S22-Au0068381         NCP         mg/kg         4.4         6.5         33           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Fluorene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         2.7         6.8         84           Pyrene         S22-Au0063096         NCP         mg/kg         2.7         6.8		Fail	Q15
Benzo(g.h.i)perylene         S22-Au0068381         NCP         mg/kg         4.2         8.1         62           Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         3.6         7.0         68           Chrysene         S22-Au0068381         NCP         mg/kg         4.4         6.5         33           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         6.5         0.7         66           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         2.0.5         <.5		Fail	Q15
Benzo(k)fluoranthene         S22-Au0068381         NCP         mg/kg         3.6         7.0         68           Chrysene         S22-Au0068381         NCP         mg/kg         4.4         6.5         33           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         55           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluorene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         2.7         6.8         84           Pyrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         84           Pyrene         S22-Au0068381         NCP         mg/kg         7.8         13         54           Duplicate           S22-Au0063096         NCP         mg/kg         <0.1		Fail	Q15
Chrysene         S22-Au0068381         NCP         mg/kg         4.4         6.5         31           Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         5           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         55           Fluorene         S22-Au0068381         NCP         mg/kg         <0.5		Fail	Q15
Dibenz(a.h)anthracene         S22-Au0068381         NCP         mg/kg         0.9         1.5         5           Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         5           Fluorene         S22-Au0068381         NCP         mg/kg         8.0         14         5           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Phenanthrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         88           Pyrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         88           Pyrene         S22-Au0068381         NCP         mg/kg         7.8         13         54           Duplicate            7.8         13         54           Chlordanes - Total         S22-Au0063096         NCP         mg/kg         <0.05		Fail	Q15
Fluoranthene         S22-Au0068381         NCP         mg/kg         8.0         14         57           Fluorene         S22-Au0068381         NCP         mg/kg         <0.5		Fail	Q15
Fluorene         S22-Au0068381         NCP         mg/kg         < 0.5         0.7         6           Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         < 0.5		Fail	Q15
Indeno(1.2.3-cd)pyrene         S22-Au0068381         NCP         mg/kg         2.8         4.9         54           Naphthalene         S22-Au0068381         NCP         mg/kg         <0.5		Fail	Q15
Naphthalene         S22-Au0068381         NCP         mg/kg         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5         < 0.5		Fail	Q15
Phenanthrene         S22-Au0068381         NCP         mg/kg         2.7         6.8         84           Pyrene         S22-Au0068381         NCP         mg/kg         7.8         13         54           Duplicate         Grganochlorine Pesticides         Result 1         Result 2         RF           Chlordanes - Total         S22-Au0063096         NCP         mg/kg         <0.1		Pass	
Pyrene         S22-Au0068381         NCP         mg/kg         7.8         13         54           Duplicate         Organochlorine Pesticides         Result 1         Result 2         RP           Chlordanes - Total         S22-Au0063096         NCP         mg/kg         <0.1		Fail	Q15
Duplicate           Organochlorine Pesticides         Result 1         Result 2         RP           Chlordanes - Total         S22-Au0063096         NCP         mg/kg         < 0.1		Fail	Q15
Organochlorine Pesticides         Result 1         Result 2         RF           Chlordanes - Total         S22-Au0063096         NCP         mg/kg         < 0.1	+ 30 %	I dii	015
Chlordanes - Total         S22-Au0063096         NCP         mg/kg         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0.1         < 0	D	T	
4.4'-DDD         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         <		Pass	
4.4'-DDE         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         <           4.4'-DDT         S22-Au0063096         NCP         mg/kg         < 0.05		Pass	
4.4'-DDT         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         < 0.05         <		Pass	
a-HCH         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         <           Aldrin         S22-Au0063096         NCP         mg/kg         < 0.05		Pass	
Aldrin         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         < 0.05		Pass	
		Pass	
		Pass	
d-HCH S22-Au0063096 NCP mg/kg <0.05 <0.05 <		Pass	
		Pass	
Endosulfan I         S22-Au0063096         NCP         mg/kg         < 0.05         < 0.05         <           Endosulfan II         S22-Au0063096         NCP         mg/kg         < 0.05		Pass Pass	



Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan sulphate	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Au0063096	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-Au0063096	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S22-Au0063096	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Au0067589	NCP	mg/kg	11	12	8.5	30%	Pass	
Cadmium	S22-Au0067589	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Au0067589	NCP	mg/kg	27	30	11	30%	Pass	
Copper	S22-Au0067589	NCP	mg/kg	15	17	7.7	30%	Pass	
Lead	S22-Au0067589	NCP	mg/kg	29	30	2.9	30%	Pass	
Mercury	S22-Au0067589	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Au0067589	NCP	mg/kg	9.4	9.7	2.9	30%	Pass	
Zinc	S22-Au0067589	NCP	mg/kg	34	34	1.6	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Au0067309	NCP	%	24	22	8.2	30%	Pass	



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

#### Authorised by:

Analytical Services Manager
Senior Analyst-Asbestos
Senior Analyst-Metal
Senior Analyst-Organic
Senior Analyst-Volatile

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



### Certificate of Analysis

### **Environment Testing**

Nation Partners 306 / 50 Holt Street, Surry Hills NSW 2010



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Report Project Name Project ID Received Date Date Reported	Laura Martinez 918696-AID NP22013 NP22013_1 Aug 29, 2022 Sep 06, 2022
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.



Project Name	NP22013
Project ID	NP22013_1
Date Sampled	Aug 24, 2022
Report	918696-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
QAQC2	22-Au0067209			No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

#### Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyAug 30, 2022

Holding Time

			Eurofins Env ABN: 50 005 085		g Australia Pty Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
web: www.eurofins.com.au email: EnviroSales@eurofins.com			Melbourne         Geelong           6 Monterey Road         19/8 Lewalan Street           Dandenong South         Grovedale           VIC 3175         VIC 3216           Tel: +61 3 8564 5000         Tel: +61 3 8564 5000           NATA# 1261 Site# 1254         NATA# 1261 Site# 1254		lan Street 179 M Girraw NSW 2 8564 5000 Tel: +6	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 4 NATA# 1261 Site# 1		Mitchell ACT 2911 400 Tel: +61 2 6113 8091		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2075	Newcastle           4/52 Industrial Drive           Mayfield East NSW 2304           PO Box 60 Wickham 2293           Tel: +61 2 4968 8448           4 NATA# 1261 Site# 25079	Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name:       Nation Partners Pty Ltd         Address:       306 / 50 Holt Street,         Surry Hills       NSW 2010				Order No.: Report #: 918696 Phone: 0405 821 580 Fax:					Received: Due: Priority: Contact Name:	Aug 29, 2022 4:00 Sep 5, 2022 5 Day Laura Martinez	РМ			
	iject Name: iject ID:	NP22013 NP22013_1									Eu	rofins Analytical Serv	ices Manager : Rol	pert Biviano
		Sa	ample Detail			Asbestos - AS4964	Moisture Set	Suite B10A:TRH/BTEXN/PAH/OCP/PCB/Metals8						
	ey Laboratory		Site # 18217			X	X	x						
	rnal Laboratory				1									
No	Sample ID	Sample Date	Time	Matrix	LAB ID									
	QAQC2	Aug 24, 2022		Soil	S22-Au006720	) X	X	Х						
Test	Counts					1	1	1						



#### Internal Quality Control Review and Glossary General

- 1. 2. 3
- 4. 5. 6.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. Information identified on this report with the colour **orange** indicates sections of the report not covered by the laboratory's scope of NATA accreditation. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001). If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the

date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w:	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)
F/fld F/mL	Airborne fibre filter loading as Fibres ( <b>N</b> ) per Fields counted ( <b>n</b> ) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane ( <b>C</b> )
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)
g/kg	Concentration in grams per kilogram
L, mL L/min	Volume, e.g. of air as measured in AFM (V = r x t) Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)
min	Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{a}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{V}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\%_{WA} = \sum \frac{(m \times P_A)_x}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A ).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos)	Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### Asbestos Counter/Identifier:

Sayeed Abu

Senior Analyst-Asbestos

#### Authorised by:

Chamath JHM Annakkage

Senior Analyst-Asbestos

light-

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.





COST SUMMARY REPORT (RIDER LEVETT BUCKNALL)

DA ESTIMATE REPORT

AUGUST 2022

### **CARRINGTON HYDRAULIC ENGINE** HOUSE – STAGE 3

BOURKE STREET, CARRINGTON

PROJECT ID: 17763







Rider Levett Bucknall NSW Pty Ltd ABN 94 003 234 026

Suite 4, Level 1 101 Hannell Street Wickham NSW 2293 Australia

T: +61 2 4940 0000 E: newcastle@au.rlb.com

jf:17763.2.ES-Rpts.kb.mwh

23 August 2022

EJE Architecture 412 King Street NEWCASTLE NSW 2300

Attention:Dominic WarlandEmail:DWarland@eje.com.au

Dear Dominic

#### CARRINGTON HYDRAULIC ENGINE HOUSE – STAGE 3 COST ESTIMATE REPORT

We have pleasure in enclosing our Cost Estimate Report for the above stated scheme.

We trust that our report is of assistance and will be pleased to provide any further information, which you may require upon request.

Yours sincerely

Mark Hoch

٩

Mark Hocking Director Rider Levett Bucknall mark.hocking@au.rlb.com





Report	Date	Title Description	Released By
1	09.07.2021	Estimate Report – DRAFT	Director
2	14.07.2021	Estimate Report – DRAFT	Director
3	15.07.2021	Estimate Report	Director
4	29.07.2021	Estimate Report – Rev A	Director
5	09.08.2021	Estimate Report – Rev B	Director
6	12.08.2021	Estimate Report – Rev C	Director
7	23.08.2022	DA Estimate Report	Director

### **REPORTS ISSUED**

Prepared by:	Reviewed by:	Project Director:
Kai Rala McKinnon-Barbosa	Syidah Arnold	Mark Hocking
Senior Surveyor	Associate	Director
kai.barbosa@au.rlb.com	syidah.arnold@au.rlb.com	mark.hocking@au.rlb.com

This report is for the use only of the party to whom it is addressed and shall be used for no other purposes without the written consent of Rider Levett Bucknall. No responsibility is accepted for any third party who may use or rely on the whole or any part of the contents of this report.

Document No.:	TN-GO-0101	Version No.:	V2.0	Date Version Issued:	11-10-2021



### **TABLE OF CONTENTS**

1	Executive Summary	5
2	Introduction	6
2.1	Purpose of Report	6
2.2	Project Description	6
3	Project Costs	7
3.1	Cost Estimate Summary	7
4	Basis of Estimate	8
4.1	Basis of Quantification & Pricing	8
4.2	Basis of Procurement	8
4.3	Programme	8
4.4	Escalation	8
4.5	Clarifications and Assumptions	8
4.6	Items Specifically Excluded	8
4.7	COVID-19 Impacts	10
Sche	edule of Information	13

### **APPENDICES**

Appendix A: Estimate
Appendix B: Schedule of Information
Appendix c: Standard Area Definitions



### **1 EXECUTIVE SUMMARY**

This report estimates a total cost of \$1,165,607 excluding GST and \$1,282,170 including GST. This report is based on the information received on 9 August 2022 via email received from Dominic Warland of EJE Architecture, please refer to Appendix D for details.

With a total Gross Floor Area of 294m2, the above estimate represents a cost of \$3,965/m2 excluding GST and \$4,361/m2 including GST.

Rates used in the formulation of this estimate are current as at August 2022. As we have not been provided with any program escalation has been excluded from the estimate. We have prepared this estimate based on the project being procured via a single stage competitive tender.

We refer you to the body of the report for the full summary, assumptions, clarifications, and detailed basis of the above estimate.



### 2 INTRODUCTION

### 2.1 PURPOSE OF REPORT

This DA Estimate Report has been prepared for the purpose of providing an indicative order of development cost suitable to fulfil the concept DA submission requirements for Council. The actual cost of the development will vary depending on numerous matters including but not limited to the method of contractual procurement, staging, quality of finishes and fitments, method of construction, calibre of contractor, timing and implementation of the works, utility provisions outside site boundaries, etc. Hence, this report is for the benefit of Council only and is not to be relied upon by third parties.

### 2.2 PROJECT DESCRIPTION

The project comprises of remediation works to the existing Carrington Hydraulic Engine House and construction of a new access ramp located at Bourke Street, Carrington. The project following scope of works:

- Remediation works to the existing Hydraulic Engine House including access ramp, alterations and additions, and services;
- Encapsulation of Engine Room subfloor; and
- External works including access ramp, landscaping, and connection to services.
- Crane base signage on reused sandstone plinth
- Stainless steel interpretation signage on reused sandstone plinth



### **3 PROJECT COSTS**

### 3.1 COST ESTIMATE SUMMARY

The costs can be summarised as follows:

Description	Cost	Cost/m2	% Cost
Carrington Hydraulic Engine House	1,023,079	3,480	80%
Stainless Steel Interpretation Sign	12,084		1%
Access Ramp	112,127		9%
Crane Base Plaques	18,317		1%
TOTAL CONSTRUCTION COST	1,165,607	3,965	91%
Consultant Fees	Excl.		
Project Contingency - Carrington Hydraulic Engine House	Excl.		
Escalation	Incl.		
Staging / Phasing Costs	Excl.		
Design and Planning Fees	Excl.		
Authority Fees and Charges	Excl.		
Land and Legal Fees	Excl.		
Finance Cost and Interest Charges	Excl.		
Goods and Services Tax	116,563		
Rounding	Excl.		
TOTAL OTHER PROJECT COSTS	116,563	396	9%
TOTAL ESTIMATE	1,282,170	4,361	100%

A further breakdown of cost can be found in the Estimate in Appendix A of this report.



### 4 BASIS OF ESTIMATE

#### 4.1 BASIS OF QUANTIFICATION & PRICING

This cost report has been prepared to forecast the total cost of the project as currently detailed. It has been based on DA issue information.

This cost estimate is based on the documentation listed in Appendix B and does not, at this stage, provide a direct comparison with the tenders to be received at a future date.

#### 4.2 BASIS OF PROCUREMENT

The costs in this report assumes that a competitive tender will be obtained from a suitably qualified contractor.

#### 4.3 PROGRAMME

No programme information has been provided.

#### 4.4 ESCALATION

Our estimate has been based on market rates current at the date of this report.

#### 4.5 CLARIFICATIONS AND ASSUMPTIONS

- We have assumed works will take place in a single continuous stage.
- We have assumed the majority of decontamination has already occurred
- We have assumed that the site can be made safe during construction using commonly used safe work methodologies
- Existing machinery relocation is excluded
- Securing existing platform in Generator room is excluded
- We have assumed existing site infrastructure is suitable for the proposed project
- Allowances for building services have been made on benchmarked rates and lump sum allowances where
  applicable. These allowances are subject to future design and should be reviewed in conjunction with
  specialist services engineers.
- Builder's Preliminaries and Margin have been included.
- Design Consultant Fees have been excluded.
- Authority Fees have been excluded.
- We have excluded loose FF&E from our estimate

#### 4.6 ITEMS SPECIFICALLY EXCLUDED

#### Site Works

- Demolition of existing buildings
- Rock excavation
- Piled foundations
- Removal and / or remediation of hazardous materials beyond specified
- Upgrades of existing services infrastructure
- Works outside site boundary
- Decontamination and removal of hazardous materials beyond specified
- Diverting existing services



#### **Temporary Works**

- Temporary staging space and decanting works
- Standby power generation

#### Structure

Structural transfers

#### **Fit-out and Interiors**

- Fitout to office / retail / concessions, etc.
- Curtains and blinds
- Loose furniture fixtures and equipment
- Operating supplies and equipment
- Artwork
- Tenant fit-out

#### **Building Services**

- AV Equipment
- Active ICT equipment
- Specialised equipment, computer equipment, business machines (copiers, printers, etc.) or other 'plug-in' equipment

#### **Sustainability**

Greenstar or NABERS certification

#### **Authority Fees and Requirements**

- Authority charges and contributions
- Planning Reform Fee (plan FIRST)
- Destructive testing
- Affordable Housing contributions
- Environmental impact studies

#### Other

- Development costs including land, approvals, legal fees, agent fees and lease incentives
- Phasing costs
- Contingencies
- Consultant fees
- Escalation
- Client direct costs
- Finance and interest charges
- Goods and Services Tax
- Prototypes
- Relocation costs
- Promotion and marketing costs
- Pre-opening budget
- Effect of foreign exchange currency fluctuations
- Work at penalty rates for "out of hours" or programme acceleration
- Changes in law, standards and codes



#### 4.7 COVID-19 IMPACTS

Our estimate has been prepared to reflect the anticipated changed market conditions due to the impact of COVID-19.

Our estimate makes provisions for amended site requirements and head contractor preliminaries including items such as:

- Additional worker shed facilities
- Additional regular site cleaning of facilities
- Longer site operating times to facilitate movement of workers with restricted numbers in lifts and hoists

RLB advise our current estimate does not account for exacerbated risks such as:

- Imported material delivery delays
- · Further tightening of social distancing rules impacting on programme
- Exchange rate fluctuations

RLB recommends that a project contingency provision is made for COVID-19 impacts dependent of the status of the design and delivery cycle of the project. We would be pleased to discuss suitable provisions.

RLB recommends undertaking a risk analysis of this issue and we would be pleased to assist in the preparation of an order of cost assessment and/or sensitivity analysis for the project based on defined criteria. Our recently added programming capability can also be of assistance in these matters.

RLB anticipate that the impact on the estimate may only be in the short to medium term and that long-term impacts may revert to normal circumstances hence this will be subject to ongoing monitoring.

#### APPENDIX A: DA Estimate

17763 – CARRINGTON HYDRAULIC ENGINE HOUSE – STAGE 3 DA ESTIMATE REPORT | PREPARED BY RIDER LEVETT BUCKNALL



LOCA	TION SUMMARY	Rates		oss Floor Area At August 2022
Ref	Location	GFA m²	GFA \$/m²	Total Cost \$
Α	CARRINGTON HYDRAULIC ENGINE HOUSE			
A1	SITE PREPARATION AND DEMOLITION WORKS			263,761
A2	BUILDING WORKS	294	2,583	759,318
	A - CARRINGTON HYDRAULIC ENGINE HOUSE	294	3,480	1,023,079
в	STAINLESS INTERPRETATION SIGN			12,084
С	ACCESS RAMP			112,127
D	CRANE BASE PLAQUES			18,317
ESTIN	IATED NET COST	294	3,965	1,165,607
MARC	GINS & ADJUSTMENTS			
Consu	ultant Fees			Excl.
Projec	ct Contingency - Carrington Hydraulic Engine House			Excl.
Escala	ation to Q4 2021			Excl.
Stagir	ng / Phasing Costs			Excl.
Desig	n and Planning Fees			Excl.
Autho	rity Fees and Charges			Excl.
Land	and Legal Fees			Excl.
Finan	ce Cost and Interest Charges			Excl.
Goods	s and Services Tax 10.0%			116,563
Round	ding			Excl.
ESTIN	NATED TOTAL COST	294	4,361	1,282,170



### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

A1 SITE	PREPARATION AND DEMOLITION WORKS		Rates	s Current A	t August 2022
Ref	Description	Unit	Qty	Rate \$	Total Cost \$
AR	ALTERATIONS AND RENOVATIONS				
112	Allowance to demolish non-original lightweight timber walkway, handrail and structure to Engine Room	m²	28	100	2,800
236	Allowance to treat all contaminated fabric with PVA spray sealant	m²	259	100	25,900
237	Allowance to clear light debris to base of Accumulator Tower	m²	25	100	2,500
247	Allowance to remove existing floor grates and place into sub-floor cavity	m²	11	150	1,650
254	Allowance to decontaminate and move existing grates	m²	10	650	6,500
255	Allowance to cut back existing steel support beams	m²	10	150	1,500
256	Allowance to decontaminate grates	m²	10		Incl.
293	Allowance to re-install original floor grates	m²	10	500	5,000
260	Allowance to grind down existing raised concrete plinth and make good	m²	3	500	1,500
115	Allowance to remove existing large timber beams	m	49	300	14,700
113	Allowance to demolish existing timber beams	m	14	200	2,800
238	Allowance to rake out mortar course and make good for new termimesh lining to Accumulator Tower	m	28	250	7,000
246	Allowance to remove existing beams and structure	m	13	350	4,550
248	Allowance to cut down top of brick dwarf wall to suit new ramp	m	20	300	6,000
249	Allowance to remove and disposed rotted timber beam	m	11	90	990
263	Allowance to demolish non-original timber balustrade	m	4	50	200
150	Allowance to demolish timber doorway, frame and jambs	No	2	250	500
3	Allowance to demolish masonry to existing door opening	No	2	300	600
28	Allowance to remove existing lintel	No	1	350	350
298	Seal existing opening around new services conduits	No	1	500	500
144	Allowance for temporary balustrade to wall opening	No	1	950	950
235	Allowance to demolish single steel column and leave remnants in cavity for permanent storage	No	1	200	200
239	Allowance to remove timber beam below first mortar course to Accumulator Tower	No	2	500	1,000
240	Allowance to clean debris from existing pipe penetration	No	2	500	1,000
241	Allowance to trim end of pipe protruding from wall	No	2	200	400
242	Allowance to cut sandstone in situ to enlarge vent opening; 650mm SQ	No	4	1,200	4,800
243	Allowance to move heavy rubble to clear base of columns for new plinth	No	2	500	1,000
244	Allowance to demolish brickwork and timber framing and make good	No	1	500	500
251	Allowance to remove internal downpipe and make good	No	2	350	700



### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

A1 SITE	PREPARATION AND DEMOLITION WORKS (continued)		Rate	s Current A	t August 2022
Ref	Description	Unit	Qty	Rate \$	Total Cost \$
252	Allowance to cut portion of fixed guide rail for new door opening, retain piece of rail for interpretive display within tower. Including new fixings for remnant guide rail	No	1	750	750
253	Remove and dispose fixed timber column	No	1	150	150
258	Allowance to cut down small column below level of new floor slab	No	1	250	250
259	Allowance to remove existing rail and allow to decontaminate for re- installation	No	1	300	300
261	Allowance to remove steel plate to create opening	No	1	300	300
264	Allowance to to sort existing stack of disused heavy stone and identify pieces for re-use	No	1	6,500	6,500
271	Allowance for new 110dia trade waste and 2x 100dia conduits and make good	No	1	500	500
272	Allowance to permanently seal pipe opening and wall penetration	No	3	180	540
286	Allowance to create new opening in wall and salvage bricks for re- use	No	1	1,500	1,500
287	Allowance to remove loose plywood sheets over missing panels	No	4	50	200
289	Allowance to remove existing timber and pipe attachments and clear rubble for new plinth	No	1	500	500
295	Allowance to trim bottom edge of existing door leaves	No	1	200	200
296	Allowance to trim existing pipe penetration above proposed floor level	No	1	50	50
302	Allowance to trim pipe and conduit	No	2	75	150
303	Remove loose conduit	No	1	75	75
305	Allowance to remove timber beam below first mortar course	No	3	150	450
308	Remove portion of sandstone kerb for new ramp	No	1	500	500
310	Trim down single brick pier to below proposed floor level	No	1	150	150
311	Locally trim deck to suit pipe through wall and guide rail	No	2	150	300
277	Allowance for sundry clearance to sub floor prior to pouring plinths	Item			4,500
187	Allowance for cleaning and decontamination of existing floor grates to entry niche	Item			15,000
191	Termite maintenance - EXCLUDED	Item			Excl.
221	Chemical damp proof course- EXCLUDED	Item			Excl.
143	Allowance to remove temporary asbestos seals to openings	Item			3,600
25	Allowance to remove down pipes and make good	Item			1,500
26	Allowance for sundry patch and repair to wall penetrations	Item			5,000
15	Allowance for termite protection	Item			28,000
17	Allowance to secure and retain existing brackets, pipes and fixtures	Item			10,000
306	Allowance to seal deep weathering to stone with mortar where required	Item			15,000
250	Allowance for sundry demolition and make good	Item			10,000



Rates Current At August 2022

#### LOCATION ELEMENT ITEM A CARRINGTON HYDRAULIC ENGINE HOUSE

A1 SITE PREPARATION AND DEMOLITION WORKS (continued)

Unit Ref Description Qty Rate **Total Cost** \$ \$ 10 Secure corner platform to Generator Room - EXCLUDED Item Excl. 222 Salt removal to existing building - EXCLUDED Item Excl. 9 Remove machinery and relocate to external display - EXCLUDED Item Excl. 186 Removal of hazardous or contaminated materials - EXCLUDED Item Excl. **AR - ALTERATIONS AND RENOVATIONS** 202,055 ΧХ **EXTERNAL ALTERATIONS AND RENOVATIONS** 69 Allowance to remove portion of sandstone kerb and make good 2 50 100 m 279 Allowance for temporary asphalt ramp from ground to new ramp m² 3 500 1,500 **XX - EXTERNAL ALTERATIONS AND RENOVATIONS** 1,600 XP SITE PREPARATION Allowance for site clearance to proposed ramp including removal of 3 224 m² 35 105 vegetation and undergrowth Allowance for temporary midspan propping 3,600 326 m 24 150 331 Allowance to provide temporary propping and formwork to all sides Item Incl. of glass floor inserts 40 Temporary shoring, propping, strutting, underpinning etc to existing Excl. Item buildings other than localised propping to suit scope of works -EXCLUDED 39 Treatment of reactive soil and acid sulphate soils - EXCLUDED Item Excl. Dealing with heritage, cultural and archaeological artifacts / findings Excl. 41 Item - EXCLUDED 44 **Rock excavation - EXCLUDED** Item Excl. 46 Removal of contaminated soils and materials other than specified -Item Excl. EXCLUDED 47 Mine grouting and mine subsidence works - EXCLUDED Item Excl. **XP - SITE PREPARATION** 3,705 PR PRELIMINARIES 1 Builders Preliminaries (20%) Item 43,960 **PR - PRELIMINARIES** 43,960 BM **BUILDERS MARGIN** 2 Builders Margin (6%) Item 12,441 **BM - BUILDERS MARGIN** 12,441 SITE PREPARATION AND DEMOLITION WORKS 263,761



#### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

A2 BUILDING WORKS

GFA: 294 m² Cost/m²: 2,583 Rates Current At August 2022

Ref	Description	Unit	Qty	Rate \$	Total Cost \$
AR	ALTERATIONS AND RENOVATIONS			Ŧ	Ŧ
274	Provisional sum allowance to arrange salvaged building fabric	Item			20,000
204	Allowance for general asbestos decontamination works to Engine Room including airlock and testing for duration of works	Item			60,000
33	Allowance to remove and relocate items for heritage interpretation display and dispose of remainder	Item			25,000
14	Allowance to make good of existing sandstone; assumed to 10% of wall surface	Item			40,000
	<b>AR - ALTERATIONS AND RENOVATIONS</b>			493/m²	145,000
SB	SUBSTRUCTURE				
269	Allowance for termimesh and geofabric	m²	31	75	2,325
270	Allowance for 20mm dia blue metal gravel to 200mm depth	m²	25	70	1,750
278	Allowance for ST.01 new sandstone to seal penetrations	No	11	950	10,450
329	Allowance for pad footing PF1; 450mm x 450mm x 350mm	No	6	300	1,800
330	Allowance for pad footing PF2; 450mm x 450mm x 350mm min.	No	15	400	6,000
275	Allowance for SA2; 150x90x8 UA	t	0.15	8,500	1,275
328	Allowance for loose and attached connections (15%)	t	0.03	8,500	255
122	Extra over allowance for sundry joints and sealants to seal subfloor to ensure permanent air-tight cavity	Item			50,000
	SB - SUBSTRUCTURE			251/m²	73,855
CL	COLUMNS				
325	Allowance for SC1; 89x89x3.5 SHS	t	0.15	8,500	1,275
327	Allowance for loose and attached connections - per column	No	8	150	1,200
18	Works to existing columns - EXCLUDED	Item			Excl.
	CL - COLUMNS			8/m²	2,475
UF	UPPER FLOORS				
120	Allowance for glass floor	m²	11	4,000	44,000
153	Allowance for structural upgrades to existing slab	m²	35	150	5,250
165	Allowance for structural updates to suit new slabs	m²	221	200	44,200
226	Allowance for Conc. 01; Honed concrete floor	m²	175	280	49,000
227	Allowance for Conc. 02; Honed and stained concrete floor	m²	47	330	15,510
228	Allowance for Conc. 03; Broom finish concrete floor	m²	31	290	8,990
232	Extra over concrete slab for slab turn down to entry	m	42	1,000	42,000
290	Allowance for glass panel over grates	m²	6	4,000	24,000
307	Seal base of existing lowered floor slab with concrete	m²	31	50	1,550
234	Floor finish to Accumulator Tower 2 - EXCLUDED	Item			Excl.
	UF - UPPER FLOORS			798/m²	234,500



GFA: 294 m² Cost/m²: 2,583

#### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

2 BUIL	DING WORKS (continued)				Cost/m²: 2,58 t August 2022
Ref	Description	Unit	Qty	Rate \$	Total Cost \$
SC	STAIRCASES				
231	Allowance for staircase to Engine Room including landings and balustrade	No	1	5,300	5,300
	SC - STAIRCASES			18/m²	5,300
RF	ROOF				
19	Allowance for make good works to roof relating to solar PV installation	Item			5,000
181	Works to existing roof other than specified - EXCLUDED	Item			Excl.
	RF - ROOF			17/m²	5,000
EW	EXTERNAL WALLS				
312	Replica heritage grille with woven steel security screen	No	4	5,000	20,000
147	Works to existing facade - EXCLUDED	Item			Excl.
	EW - EXTERNAL WALLS			68/m²	20,000
ww	WINDOWS				
145	Internal glazed window panels to Engine Room - EXCLUDED	Item			Excl.
149	Works to windows of base building - EXCLUDED	Item			Excl.
	WW - WINDOWS				Excl.
ED	EXTERNAL DOORS				
266	Allowance for secure access hatch to existing opening	No	4	150	600
288	Allowance for new wall vent to existing opening	No	2	850	1,700
301	Allowance for steel lintel above new door opening	t	0.10	8,500	850
148	Works to external doors of base building other than specified - EXCLUDED	Item			Excl.
	ED - EXTERNAL DOORS			11/m²	3,150
NW	INTERNAL WALLS				
282	Allowance for temporary barrier in timber studs to door opening	m	3	200	600
294	Allowance to re-install original rail on new slab	No	1	250	250
299	Allowance to brick infill original door opening	m²	3	550	1,650
297	BAL.02 - Industrial balustrade to edge of slab	m	19	650	12,350
	NW - INTERNAL WALLS			51/m²	14,850
ND	INTERNAL DOORS				
280	Allowance for stone threshold within new door opening	No	1	1,500	1,500
281	Allowance to reconstruct brick nibs and stone base course within new doorway	No	2	2,000	4,000
	ND - INTERNAL DOORS			19/m²	5,500
FF	FLOOR FINISHES				
229	Allowance for TGSI; Tactile ground surface indicator	m²	2	1,000	2,000



GFA: 294 m² Cost/m²: 2,583

#### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

A2 BUILDING WORKS (continued)			GFA: 294 m ² Cost/m ² : 2,583 Rates Current At August 2022		
Ref	Description	Unit	Qty	Rate \$	Total Cost \$
230	Allowance for MW.01; Matwell entrance matting	m²	5	500	2,500
	FF - FLOOR FINISHES			15/m²	4,500
CF	CEILING FINISHES				
16	Spray paint existing soffit and trusses - EXCLUDED	m²	747		Excl.
	CF - CEILING FINISHES				Excl.
HS	HYDRAULIC SERVICES				
163	Subfloor drainage - EXCLUDED	Item			Excl.
	HS - HYDRAULIC SERVICES				Excl.
MS	MECHANICAL SERVICES				
265	Allowance for subfloor supply and exhaust system including hepa filters, fans and ducts	Lot	1	18,000	18,000
338	Allowance for testing, commissioning, training, O/M manuals, etc	Item			2,500
332	Preventative maintenance - EXCLUDED	Item			Excl.
	MS - MECHANICAL SERVICES			70/m²	20,500
ES	ELECTRICAL SERVICES				
225	Alllowance for LST.01; Led light strip	m	49	350	17,150
223	Allowance for 2kW PV solar system including installation	No	1	5,000	5,000
267	Allowance to run new services through existing opening around pipe	No	1	500	500
268	Allowance for new electrical services mounted to wall	No	1	250	250
291	Allowance for FB; Recessed electrical floor box including 1 x DGPO and 3 x blank plates	No	9	1,250	11,250
292	Allowance for LSP; New light switch panel	No	1	400	400
317	Allowance for PWP1; LED Batten	No	10	350	3,500
318	Allowance for track spot	No	4	400	1,600
319	Allowance for LED spot light	No	6	900	5,400
320	Allowance for isolator	No	2	550	1,100
321	Allowance for BAT; Battery	No	1	2,500	2,500
322	Allowance for INV; Inverter	No	1	750	750
323	Allowance for Distribution Board	No	1	2,500	2,500
324	Allowance for testing, commissioning, training, O/M manuals, etc	Item			5,000
	ES - ELECTRICAL SERVICES			194/m²	56,900
BW	BUILDERS WORK IN CONNECTION WITH SERVICES				
198	Builders work in connection with services (7%)	Item			5,418
	<b>BW - BUILDERS WORK IN CONNECTION WITH SERVICES</b>			18/m²	5,418
PR	PRELIMINARIES				
1	Builders Preliminaries (20%)	Item			126,553
	PR - PRELIMINARIES			430/m²	126,553

## CARRINGTON HYDRAULIC ENGINE HOUSE

RLB Bucknall

### DA ESTIMATE - STAGE 3

#### LOCATION ELEMENT ITEM

A CARRINGTON HYDRAULIC ENGINE HOUSE

A2 BUILDING WORKS (continued)

GFA: 294 m² Cost/m²: 2,583 Rates Current At August 2022

Ref	Description	Unit	Qty	Rate \$	Total Cost \$
BM	BUILDERS MARGIN				
2	Builders Margin (6%)	Item			35,817
		<b>BM - BUILDERS MARGIN</b>		122/m²	35,817
BUILDING WORKS			2,583/m ²	759,318	



#### LOCATION ELEMENT ITEM B STAINLESS INTERPRETATION SIGN

Rates Current At August 2022

Ref	Description	Unit	Qty	Rate \$	Total Cost \$
XL	LANDSCAPING AND IMPROVEMENTS				
314	Stainless steel interpretive sign	No	1	5,500	5,500
315	Allowance for salvaged stone plinth	No	2	2,000	4,000
XL - LANDSCAPING AND IMPROVEMENTS					9,500
PR	PRELIMINARIES				
1	Builders Preliminaries (20%)	Item			2,014
	PR - PRELIMINARIES				2,014
BM	BUILDERS MARGIN				
2	Builders Margin (6%)	Item			570
	BM - BUILDERS MARGIN				570
STAINLESS INTERPRETATION SIGN 12,0					12,084



#### LOCATION ELEMENT ITEM C ACCESS RAMP

Rates Current At August 2022

Ref	Description	Unit	Qty	Rate \$	Total Cost \$	
UF	UPPER FLOORS					
110	Extra over concrete floor slab for internal ramp including balustrade	m²	21	1,450	30,450	
	UF - UPPER FLOORS				30,450	
XR	ROADS, FOOTPATHS AND PAVED AREAS					
233	Allowance for SSD.01; Stainless steel decking	m²	35	650	22,750	
335	Concrete footing: 600mm x 600mm x 400mm deep	No	14	525	7,350	
337	BAL-01 - Balustrade assume stainless steel	m	34	500	17,000	
333	B1: 150 x 75 x 6 channel GR316 SS	t	0.87	10,000	8,700	
334	SC1: 80 x 3.0 CHS GR316 SS	t	0.05	10,000	500	
336	Allowance for loose and attached connections (15%)	t	0.14	10,000	1,400	
	XR - ROADS, FOOTPATHS AND PAVED AREAS				57,700	
PR	PRELIMINARIES					
1	Builders Preliminaries (20%)	Item			18,688	
	PR - PRELIMINARIES				18,688	
BM	BUILDERS MARGIN					
2	Builders Margin (6%)	Item			5,289	
	BM - BUILDERS MARGIN				5,289	
ACCE	ACCESS RAMP 1			112,127		



#### LOCATION ELEMENT ITEM D CRANE BASE PLAQUES

Rates Current At August 2022

Ref	Description	Unit	Qty	Rate \$	Total Cost \$
XL	LANDSCAPING AND IMPROVEMENTS				
313	Crane base interpretive plaques including salvaged sandstone plinth, concrete pad and mowing strip	No	4	3,600	14,400
XL - LANDSCAPING AND IMPROVEMENTS 1					14,400
PR	PRELIMINARIES				
1	Builders Preliminaries (20%)	Item			3,053
	PR - PRELIMINARIES				3,053
BM	BUILDERS MARGIN				
2	Builders Margin (6%)	Item			864
	BM - BUILDERS MARGIN				864
CRANE BASE PLAQUES					18,317

#### APPENDIX B: Schedule of Information



### SCHEDULE OF INFORMATION

#### Architectural documentation prepared by EJE Architecture dated 8 April 2022:

- 11009 DA A000 Coversheet & Site Plan Rev A
- 11009 DA –A101 Sub Floor Existing / Demolition Plan– Rev A
- 11009 DA –A102 Ground Floor Existing / Demolition Plan– Rev A
- 11009 DA –A111 Sub-Floor Proposed Plan– Rev A
- 11009 DA –A112 Ground Floor Proposed Plan Rev A
- 11009 DA –A113 Roof Proposed Plan Rev A
- 11009 DA –A202 Ground Floor Slab Setout/Dimension Plan Rev A
- 11009 DA A501 South & West Elevations Existing Rev A
- 11009 DA –A511 South & West Elevations Proposed Rev A
- 11009 DA –A551 Sections Existing Rev A
- 11009 DA A561 Sections Proposed Rev A
- 11009 DA –A801 Engine RM Internal Elevs Existing/Demolition
- 11009 DA –A802 Gen. Room, Accum. Tower 1 & 2 Internal Elevs Existing/Demolition Rev A
- 11009 DA –A811 Engine Room Internal Elevs Proposed Rev A
- 11009 DA –A814 Gen. Room, Accum. Tower 1&2 Internal Elevs Proposed Rev A
- 11009 DA –A901 Construction Details Rev A
- 11009 DA –A902 Sandstone Plaques Rev A

#### Structural documentation prepared by Northrop dated 9 May 2022:

- NL1622294 S K00 Structural Notes Rev A
- NL1622294 S K1 Slab Support Structure Low Level (Temporary Formwork Support) Rev A
- NL1622294 S K2 Floor Slab Plan Rev A
- NL1622294 S K3 Floor Slab Details Rev A
- NL1622294 S KF.01 Glass Floor Panel– Rev A
- NL1622294 S K3 Steel Access Ramp Rev A

### Electrical Services documentation prepared by Electrical Projects Australia Pty. Ltd dated 8 September 2021:

- 21341 E00 Cover Sheet Issue B
- 21341 E01 Ground Floor Plan Electrical Layout Issue E
- 21341 E02 Single Line Diagram Issue B
- Electrical Services Specification dated 17 September 2021

#### Mechanical Services documentation prepared by Northrop dated 7 September 2021:

- 10000 M000 Cover Sheet and Drawing Schedule Rev A
- 10000 M001 Legend, Notes, Schedules and Details Rev B
- 10000 M100 Subfloor Rev A

#### Survey Drawing Lot 30 DP 1190075 - prepared by Monteath & Powys dated 16 February 2017

#### Statement of Environment Effects prepared by ADW Johnson dated 14 April 2022

#### Statement of Heritage Impact – 003 Rev A prepared by EJE Heritage dated April 2022

#### Conservation Management Plan Revision A prepared by EJE Heritage dated 17 December 2021

#### APPENDIX C: Standard Area Definitions



### **STANDARD AREA DEFINITIONS**

The terminology "GFA" as utilised in this report relates to Gross Floor Area. The definition of GFA as measured in this report is as follows:

#### **GROSS FLOOR AREA (G.F.A.)**

The sum of the "Fully Enclosed Covered Area" and "Unenclosed Covered Area" as defined.

#### FULLY ENCLOSED COVERED AREA (F.E.C.A.)

The sum of all such areas at all building floor levels, including basements (except unexcavated portions), floored roof spaces and attics, garages, penthouses, enclosed porches and attached enclosed covered ways alongside buildings, equipment rooms, lift shafts, vertical ducts, staircases and any other fully enclosed spaces and usable areas of the building, computed by measuring from the normal inside face of exterior walls but ignoring any projections such as plinths, columns, piers and the like which project from the normal inside face of exterior walls. It shall not include open courts, lightwells, connecting or isolated covered ways and net open areas or upper portions of rooms, lobbies, halls, interstitial spaces and the like which extend through the storey being computed.

#### **UNENCLOSED COVERED AREA (U.C.A.)**

The sum of all such areas at all building floor levels, including roofed balconies, open verandahs, porches and porticos, attached open covered ways alongside buildings, undercrofts and usable space under buildings, unenclosed access galleries (including ground floor) and any other trafficable covered areas of the building which are not totally enclosed by full height walls, computed by measuring the area between the enclosing walls or balustrade (i.e. from the inside face of the U.C.A. excluding the wall or balustrade thickness). When the covering element (i.e. roof or upper floor) is supported by columns, is cantilevered or is suspended, or any combination of these, the measurements shall be taken to the edge of the paving or to the edge of the cover, whichever is the lesser. U.C.A. shall not include eaves overhangs, sun shading, awnings and the like where these do not relate to the clearly defined trafficable areas, nor shall it include connecting or isolated covered ways.

